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Abstract 

Face recognition systems are susceptible to presentation attacks, which can 

severely compromise their reliability in security-sensitive applications. Existing 

methods, such as Deep Pixel-wise Binary Supervision (DeepPixBis), primarily 

focus on facial regions, often neglecting critical contextual cues in the 

surrounding image that could signal spoofing attempts. This paper introduces 

an efficient dual-branch convolutional neural network architecture that 

integrates facial and contextual information for robust face presentation attack 

detection, all while maintaining a compact model size. The proposed model 

processes the extracted face and the entire image independently, producing a 

pixel-wise map for the face and a binary output for the full image. Trained and 

evaluated on the OULU-NPU dataset using standard ISO/IEC 30107-3 metrics, 

the proposed approach achieves state-of-the-art performance among 

DeepPixBis-based models in protocols II and III. Additionally, it demonstrates 

state-of-the-art performance in protocol II across all existing models, not just 

those based on DeepPixBis. Remarkably, it achieves this while being the 

smallest model among all existing anti-spoofing deep-learning models (1.4M 

parameters), demonstrating its practicality in real-world scenarios. 
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1. Introduction 

Face recognition is now a ubiquitous biometric technology, widely adopted in applications 

from mobile authentication to industrial security due to its convenience. However, this success 

has created a critical vulnerability: presentation attacks (PAs), or spoofing. Attackers can 

compromise authentication integrity using simple artifacts like printed photos, video replays, or 

3D masks. In high-security settings, such failures can lead to significant breaches, making robust 

Presentation Attack Detection (PAD) an essential safeguard. 

Early PAD research relied on hand-crafted features to detect specific spoof artifacts. This 

included texture analysis using Local Binary Patterns (LBP) (Määttä et al., 2011), motion 

analysis (Anjos & Marcel, 2011), and liveness cues like eye blinking (Pan et al., 2007). 

However, these traditional methods often failed to generalize to new attack types and 

environments. The adoption of deep learning, especially Convolutional Neural Networks 

(CNNs), marked a paradigm shift by enabling models to automatically learn robust, 

discriminative features from raw pixel data, significantly improving performance. 

Despite the success of deep learning, a significant limitation persists in many state-of-the-art 

models: an over-reliance on the facial region while neglecting the rich contextual information 

present in the entire scene. These models often operate solely on tightly cropped face images, 

discarding valuable cues that could signal a presentation attack. For example, the edges of a 

handheld screen, reflections from a printed photo, or unnatural lighting inconsistencies in the 

background can be strong indicators of a spoof, as illustrated in Figure 1. Ignoring these 

contextual cues can limit the effectiveness of PAD systems, particularly against sophisticated or 

novel attack vectors. 

To address this limitation, this paper introduces an efficient dual-branch context-aware neural 

network, named "Dual-PADNet." Building upon the Deep Pixel-Wise Binary Supervision 

framework, the primary aims of this research are to: (1) propose a novel dual-branch architecture 

that simultaneously processes facial and contextual information to improve detection accuracy 

without increasing model size; (2) demonstrate that high performance can be achieved with an 

efficient training strategy and an exceptionally compact model; and (3) validate the model's 

effectiveness on the OULU-NPU benchmark dataset, aiming for state-of-the-art performance. 

The rest of this paper is organized as follows: Section 2 reviews related work, Section 3 
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 addresses the research gap and our contributions, Section 4 details our proposed methodology, 

Section 5 presents experimental results, Section 6 discusses the findings, and Section 7 

concludes the paper with suggestions for future work. 

Figure 1: Looking at the face only, it is extremely difficult to determine whether the image is a 

spoof or not. However, when examining the full image, many artifacts show up such as the 

colors in the bottom-left, bottom-right, and top-right that might be caused by a reflection. 

2. Related Work 

The field of Presentation Attack Detection (PAD) has evolved significantly, transitioning from 

methods based on hand-crafted features to sophisticated deep learning architectures. This section 

reviews this progression and identifies the key challenges that motivate the present study. 

2.1. Traditional Hand-Crafted Feature Approaches 

Early efforts in PAD focused on identifying specific, pre-defined artifacts associated with 

spoofing attacks. These methods can be broadly categorized by the cues they analyze. Texture-

based methods were among the most prominent, leveraging descriptors to capture subtle patterns 

that differentiate live skin from artificial materials like paper or screens. For example, Määttä et 

al. (2011) employed Local Binary Patterns (LBP) to analyze micro-textures, while Boulkenafet 

et al. (2016) extended this concept using color texture analysis. Concurrently, motion-based 

methods exploited temporal information, assuming that the subtle, involuntary movements of a 

live person differ from the static nature of a photo or the predictable motion of a video replay 

(Anjos & Marcel, 2011).  
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 A third category, liveness-based methods, sought physiological signs of life, such as eye blinking 

(Pan et al., 2007). While foundational, these traditional approaches often struggled with 

generalization, as their hand-crafted features were typically sensitive to variations in lighting, 

environment, and attack types not seen during development. 

2.2. The Shift to Deep Learning Architectures 

The limitations of traditional methods paved the way for deep learning, particularly 

Convolutional Neural Networks (CNNs), which can automatically learn hierarchical and highly 

discriminative features from data. This paradigm shift led to a significant leap in performance. A 

foundational work in this area is Deep Pixel-wise Binary Supervision (DeepPixBis) by George 

and Marcel (2019), which proposed supervising the network at a pixel level. By training the 

model to generate a binary map distinguishing live and spoof regions, DeepPixBis encouraged 

the network to learn fine-grained spoofing artifacts. Other deep learning strategies have also 

been explored. For example, Liu et al. (2018) introduced a CNN-RNN model that incorporated 

auxiliary supervision using depth maps, while Atoum et al. (2017) proposed a two-stream CNN 

that fused information from image patches and estimated depth. 

2.3. Enhancements to DeepPixBis  

Building on the success of initial deep learning models, subsequent research has focused on 

refining architectures and loss functions. Hossain et al. (2020) proposed A-DeepPixBis, an 

enhancement to the DeepPixBis framework. They introduced an angular margin-based binary 

cross-entropy loss (A-BCE) to improve feature discriminability and incorporated an attention 

mechanism to guide the model toward more informative facial regions. These improvements led 

to more robust performance, particularly in challenging cross-dataset scenarios. Such works 

highlight a trend toward not just deeper or wider networks, but smarter supervision and 

architectural design to extract more meaningful anti-spoofing features. 

2.4. Current Challenges  

Despite these advancements, several critical challenges remain in the field of face PAD, defining 

the research gaps that current work aims to address: 

• Neglect of Contextual Information: Many of the existing methods, including sophisticated 

deep learning models, operate on tightly cropped face images. This approach inherently 
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 discards the surrounding scene, which may contain crucial evidence of an attack, such as the 

borders of a tablet, reflections on a printed photograph, or unnatural background elements. 

• Poor Generalization to Unseen Attacks: Many models exhibit a significant drop in 

performance when evaluated on new attack types, camera sensors, or environmental 

conditions that were not part of their training data. Indicating a need for models that learn 

more fundamental and generalizable features of presentation attacks. 

• Model Size: While most models used on this field are relatively small, their computational 

cost can sometimes be prohibitive for real-world deployment on resource-constrained 

platforms, such as mobile devices or embedded systems. There is a persistent need for 

lightweight models that do not sacrifice performance. 

3. Research Gap and Contributions 

The literature review reveals a clear research gap: a lack of PAD models that effectively leverage 

contextual information while remaining computationally efficient. Existing methods are 

predominantly face-centric, making them blind to obvious spoofing cues in the surrounding 

scene. Furthermore, smaller high-performing models are desired considering the deployment of 

facial recognition on edge devices. This paper directly addresses these limitations by proposing a 

model designed to be both context-aware and lightweight. 

Our contributions are as follows: 

• Novel Dual-Branch Architecture: We introduce a dual-branch network that simultaneously 

processes facial and contextual information, enhancing the model's ability to detect 

presentation attacks while achieving a state-of-the-art compact model size. 

• Efficient Training Strategy: We only use 5 uniformly sampled frames per training video, 5 

uniformly sampled frames per validation video, and train for 30 epochs. Along with one 

augmentation per image, we believe this reduces overfitting and computational costs without 

compromising performance significantly. 

• State-of-the-Art Model Size: Previous research used DenseNet-161 (Huang et al., 2017), 

Bi-FBN (Roy et al., 2021), and CDCN (Yu et al., 2020). All of these are bigger than the 

model used here, which is the first 8 layers of DenseNet-121 amounting to only 1.4 million 

parameters.  
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• State-of-the-Art Performance: Our model achieves competitive results across all protocols 

of the OULU-NPU (Boulkenafet et al., 2017) dataset, as per ISO/IEC 30107-3 metrics 

(International Organization for Standardization, 2017). Particularly, it is the best model for 

protocols II and III among DeepPixBis-based models, and the best model for protocol II 

among all anti-spoofing models. See section 5.1 for protocol definitions and tables 1 & 2 for 

comparison with other models. 

4. Methodology: 

4.1. Overview: 

Our proposed method addresses the limitations of existing approaches by incorporating 

contextual information through a dual-branch architecture. One branch processes the extracted 

and aligned face, while the other processes the entire image. This design allows the model to 

capture both facial features and contextual clues indicative of presentation attacks. The 

architecture is shown in figure 2. 

 

 

 

 

 

 

Figure 2: The extracted face and context image (full image) share the same weights for the first 

8 layers of Densenet-121. Afterwards, the face branch outputs the pixel map, and the context 

branch outputs the binary input. 

4.2. Data Preprocessing : 

4.2.1. Face Extraction and Alignment 

We utilize RetinaFace (Deng et al., 2020), a robust face detection and alignment method, to 

extract and align faces from images. RetinaFace (Deng et al., 2020) detects facial landmarks and 
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 aligns faces to a canonical orientation, ensuring consistency across inputs. The extracted face & 

aligned face is padded by 25% to ensure no parts of the face are left. 

4.2.2. Data Augmentation 

To enhance the model's generalization capabilities, we apply various data augmentation 

techniques: 

• Random Horizontal Flips: Flipping images horizontally with a 50% probability. 

• Random Affine Transformations: Applying random rotations (±15 degrees) and scaling 

(90%-110%). 

• Color Jitter: Randomly adjusting brightness, contrast, and saturation (±20%). 

One augmentation is done per frame. 

4.3. Dual-Branch Network Architecture: 

Our model consists of two branches: the Face Branch and the Context Branch. 

4.3.1 Face Branch: 

The Face Branch processes the extracted face image and generates a 14×14 pixel-wise map 

indicating the likelihood of each pixel being part of a bona fide face. 

• Backbone Network: We use a DenseNet-121 architecture (Huang et al., 2017) pre-trained on 

ImageNet for feature extraction. 

• Encoder: The encoder consists of the first eight layers of DenseNet-121 (Huang et al., 2017), 

capturing hierarchical facial features. 

• Decoder: A 256×1 convolutional layer reduces the feature map to a single-channel pixel-wise 

map. 

• Activation: A sigmoid function is applied to produce probabilities between 0 and 1. 

4.3.2. Context Branch: 

The Context Branch processes the full image, capturing contextual cues that may indicate 

spoofing, such as background inconsistencies or artifacts. 

• Shared Encoder: The Context Branch shares the same encoder architecture as the Face 

Branch, ensuring consistency and reducing the number of parameters. 
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• Decoder and Classification: Similar to the Face Branch, it uses a decoder followed by a fully 

connected layer to produce a binary output indicating spoof or bona fide. 

The code for the model architecture can be found in our GitHub repository (Bahatheq, 2024). 

4.3.3. Fusion and Decision Making 

During inference, the outputs of both branches are combined to make the final decision. 

• Score Averaging: 

𝑏𝑖𝑛𝑎𝑟𝑦𝑝𝑟𝑒𝑑𝑠 =
𝑏𝑖𝑛𝑎𝑟𝑦𝑜𝑢𝑡𝑝𝑢𝑡 + 𝑠𝑐𝑜𝑟𝑒𝑠

2
≥ 0.5 

Where binaryoutput is the output from the Context Branch and scores is the mean of the pixel-wise 

map from the Face Branch. 

4.4. Loss Function: 

We employ a combined loss function that balances pixel-wise supervision and overall binary 

classification. 

4.4.1. Pixel-Wise Binary Cross-Entropy Loss 

The pixel-wise loss encourages the model to make accurate predictions at the pixel level for the 

Face Branch. 

𝐿pixel =
−1

𝑁
∑[𝑦𝑖𝑙𝑜𝑔⁡(𝑝𝑖) + (1 − 𝑦𝑖)𝑙𝑜𝑔⁡(1 − 𝑝𝑖)]

𝑁

𝑖=1

 

Where N is the number of pixels, yi is the ground truth label (0 for spoof, 1 for bona fide), and pi 

is the predicted probability. 

4.4.2. Binary Cross-Entropy Loss 

The binary loss penalizes incorrect overall predictions from the Context Branch. 

𝐿binary = −[𝑦𝑙𝑜𝑔⁡(𝑝) + (1 − 𝑦)𝑙𝑜𝑔⁡(1 − 𝑝)] 

4.4.3. Combined Loss Function 

We combine the two losses using a weighting factor λ=0.5: 

𝐿 = 𝜆𝐿pixel + (1 − 𝜆)𝐿binary  
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4.5. Training Strategy: 

4.5.1. Frame Selection: 

To reduce overfitting and computational costs, we select 5 uniformly sampled frames from each 

video for training and validation. This approach ensures diversity in training data while 

maintaining efficiency. This also demonstrates the ability to use less training data and get 

sufficient results. Moreover, one augmentation for each sampled frame is added. However, when 

testing, 20 uniformly sampled frames are taken from each video. This is done to ensure that the 

testing is comparable to that of other research. 

4.5.2 Optimization 

• Optimizer: Adam 

• Learning Rate: 1×10−4 

• Weight Decay: 1×10−5 

• Batch Size: 32 

• Epochs: 30 

4.6. Implementation Details: 

• Hardware: Training and testing were conducted on NVIDIA GPUs with CUDA 

acceleration. 

• Software: Implemented using PyTorch (Paszke et al., 2019). 

• Reproducibility: All model configurations are documented for reproducibility. 

5. Experiments and Results: 

5.1. Dataset: 

We trained and evaluated our model on the OULU-NPU dataset, a widely used and challenging 

benchmark for face PAD. The database was specifically designed to evaluate the generalization 

of PAD methods in mobile authentication scenarios and consists of 5,940 videos recorded 

from 55 subjects using high-resolution frontal cameras of six different smartphones in three 

different environments (mainly illumination and background scene). The attack types are limited 

to Printed Photo Attacks (created using two different high-quality printers) and Video Replay 
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 Attacks (replayed on two different high-resolution displays). The dataset is organized into four 

rigorous protocols designed to test model robustness against specific variations: 

• Protocol 1: Unseen environmental conditions (lighting and background). 

• Protocol 2: Unseen Presentation Attack Instruments (PAIs). 

• Protocol 3: Unseen camera sensors. 

• Protocol 4: A combination of all three unseen conditions. 

The choice of the OULU-NPU dataset over newer alternatives like CelebA-Spoof or CASIA-

SURF was deliberate. Primarily, it serves as the standard evaluation benchmark for the 

foundational DeepPixBis and A-DeepPixBis models, against which our work is compared. Using 

the same dataset and protocols ensures a direct and fair comparison, accurately measuring the 

incremental improvements of our proposed architecture. Furthermore, the protocol design of 

OULU-NPU provides a robust framework for assessing a model's ability to generalize, which is 

a core focus of our research. 

5.2. Evaluation Metrics 

We use the ISO/IEC 30107-3 standard metrics (International Organization for Standardization, 

2017): 

• Attack Presentation Classification Error Rate (APCER): The rate at which attack 

presentations are incorrectly classified as bona fide. 

• Bona Fide Presentation Classification Error Rate (BPCER): The rate at which bona fide 

presentations are incorrectly classified as attacks. 

• Average Classification Error Rate (ACER): Represents the average of the APCER and 

BPCER, providing a consolidated performance metric. 

𝐴𝐶𝐸𝑅 =
𝐴𝑃𝐶𝐸𝑅 + 𝐵𝑃𝐶𝐸𝑅

2
 

For all three metrics, a lower value indicates better performance with 0 being the perfect value. 

5.3. Experimental Setup: 

5.3.1. Training and Validation: 

• Data Splits: Followed the standard splits provided in the OULU-NPU (Boulkenafet et al., 

2017) dataset for fair comparison. 
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• Data Augmentation: Applied as described in Section 4.2.2. 

• Best epoch criteria: the model with the lowest ACER is chosen as the final model. 

5.3.2. Testing: 

• Frame Usage: 20 uniformly sampled frames from each video are used during testing to 

ensure comparability with existing methods.  

5.4 Results: 

To assess the performance of our proposed Dual-PADNet model, we compared it against 

DeepPixBiS-based baselines on the OULU-NPU dataset under the four standard protocols. The 

evaluation metrics include APCER, BPCER, and ACER, which provide a comprehensive 

measure of detection accuracy. The results are summarized in Table 1 below. 

Table 1. Metrics of our proposed model compared with other DeepPixBis-based models on 

OULU-NPU (Boulkenafet et al., 2017) for intra-dataset testing. 

Protocol Model APCER (%) BPCER (%) ACER (%) 

1 

DeepPixBiS (George & Marcel, 2019) 0.83 0.0 0.42 

A-DeepPixBis (Hossain et al., 2020) 1.19 0.31 0.75 

Dual-PADNet (Ours) 2.55 0.0 1.27 

2 

DeepPixBiS (George & Marcel, 2019) 11.39 0.56 5.97 

A-DeepPixBis (Hossain et al., 2020) 4.35 1.29 2.82 

Dual-PADNet (Ours) 0.52 1.51 1.01 

3 

DeepPixBiS (George & Marcel, 2019) 11.67 ± 19.57 10.56 ±14.06 11.11 ± 9.4 

A-DeepPixBis (Hossain et al., 2020) 2.78 ± 3.47 11.16 ±16.45 6.97 ±7.57 

Dual-PADNet (Ours) 2.60 ± 3.22 7.74 ± 12.33 5.17±5.72 

4 

DeepPixBiS (George & Marcel, 2019) 36.67 ±29.67 13.33 ±16.75 25.0 ±12.67 

A-DeepPixBis (Hossain et al., 2020) 3.86 ± 4.04 6.56 ±7.88 5.22 ±2.96 

Dual-PADNet (Ours) 4.81 ± 7.42 17.55± 15.69 11.18 ± 5.85 

As shown in Table 1, our Dual-PADNet architecture demonstrates superior performance among 

DeepPixBis-based models in Protocol II (ACER of 1.01%) and Protocol III (ACER of 5.17%). 

The outstanding result in Protocol II, which tests generalization to unseen spoofing devices, 
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 suggests that the contextual branch is highly effective at identifying artifacts from different 

printers and screens. While the model underperforms in Protocol I, it achieves perfect BPCER of 

0.0%, indicating it never misclassifies a genuine user, a critical feature for usability. The 

performance dip in Protocol IV highlights the extreme challenge of generalizing across all 

variables simultaneously, a known issue for many PAD models. 

5.5. Comparison with State-of-the-Art : 

To evaluate the performance of the proposed Dual-PADNet, we conducted a comparative 

evaluation against several state-of-the-art presentation attack detection (PAD) models on the 

OULU-NPU dataset. The baselines include CDCN++, Bi-FAS-S, FAS-BAS, and DeepPixBiS, 

tested under the four standard protocols. Performance was assessed using the established error 

rates APCER, BPCER, and ACER, ensuring consistency with prior PAD studies. The results of 

this comparison are summarized in Table 2 below. 

Table 2. Metrics of our proposed model compared with best models on OULU-NPU 

(Boulkenafet et al., 2017) for intra-dataset testing. 

Protocol Model APCER (%) BPCER (%) ACER (%) 

1 

CDCN++ (Yu et al., 2020) 0.4 0.0 0.2 

Bi-FAS-S (Roy et al., 2021) 3.13 0.83 1.97 

FAS-BAS (Liu et al., 2018) 1.6 1.6 1.6 

DeepPixBiS (George & Marcel, 2019) 0.83 0.0 0.42 

A-DeepPixBis (Hossain et al., 2020) 1.19 0.31 0.75 

Dual-PADNet (Ours) 2.55 0.0 1.27 

2 

CDCN++ (Yu et al., 2020) 1.8 0.8 1.3 

Bi-FAS-S (Roy et al., 2021) 1.67 1.11 1.39 

FAS-BAS (Liu et al., 2018) 2.7 2.7 2.7 

DeepPixBiS (George & Marcel, 2019) 11.39 0.56 5.97 

A-DeepPixBis (Hossain et al., 2020) 4.35 1.29 2.82 

Dual-PADNet (Ours) 0.52 1.51 1.01 

3 

CDCN++ (Yu et al., 2020) 1.7 ± 1.5 2.0 ± 1.2 1.8 ± 0.7 

Bi-FAS-S (Roy et al., 2021) 0.69 ± 0.68 0.28 ± 0.68 0.49 ± 0.63 

FAS-BAS (Liu et al., 2018) 2.7 ± 1.3 3.1 ± 1.7 2.9 ± 1.5 
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DeepPixBiS (George & Marcel, 2019) 11.67 ± 19.57 10.56 ±14.06 11.11 ± 9.4 

A-DeepPixBis (Hossain et al., 2020) 2.78 ± 3.47 11.16 ±16.45 6.97 ±7.57 

Dual-PADNet (Ours) 2.60 ± 3.22 7.74 ± 12.33 5.17±5.72 

4 

CDCN++ (Yu et al., 2020) 4.2 ± 3.4 5.8 ± 4.9 5.0 ± 2.9 

Bi-FAS-S (Roy et al., 2021) 2.50 ± 3.16 3.33 ± 4.08 2.92 ± 3.41 

FAS-BAS (Liu et al., 2018) 9.3 ± 5.6 10.4 ± 6.0 9.5 ± 6.0 

DeepPixBiS (George & Marcel, 2019) 36.67 ±29.67 13.33 ±16.75 25.0 ±12. 

A-DeepPixBis (Hossain et al., 2020) 3.86 ± 4.04 6.56 ±7.88 5.22 ±2.96 

Dual-PADNet (Ours) 4.81 ± 7.42 17.55± 15.69 11.18 ± 5.85 

Table 2 compares Dual-PADNet with a wider range of state-of-the-art models. The key finding 

is that our model achieves the best overall performance in Protocol II with an ACER of 1.01%, 

outperforming even larger and more complex models like CDCN++ and Bi-FAS-S. This is a 

significant result, confirming the value of contextual information for generalizing across 

different attack instruments. Furthermore, our model achieves a state-of-the-art BPCER of 0.0% 

in Protocol I and a state-of-the-art APCER of 0.52% in Protocol II. While other models show 

stronger performance in Protocols III and IV, our model remains competitive in these protocols, 

especially considering it is by far the smallest and most efficient, as will be discussed in Section 

6. 

6. Discussion 

6.1. Impact of Contextual Information: 

By incorporating the full image context, our model captures additional cues that are often 

overlooked in face-only approaches. Background inconsistencies, edges of spoofing devices, and 

lighting discrepancies can provide valuable information for PAD. 

6.2. Computational Efficiency: 

Our dual-branch architecture, while more complex than single-branch models, remains efficient 

due to shared weights, a small backbone, and less frame usage during training. This makes the 

model suitable for deployment in real-time applications and on devices with limited 

computational resources such as edge devices. Table 3 illustrates different anti-spoofing models 

with their sizes. 
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 To quantify the model's computational efficiency, performance was benchmarked on an NVIDIA 

RTX 3070 Ti GPU. Using a batch size of 1, the model achieved an average inference latency of 

12.039 ms, enabling a throughput of 83.07 frames per second (FPS), while consuming a peak 

VRAM of only 6.46 MB. 

Table 3. Model parameters comparison 

Model Parameters 

CDCN (Yu et al., 2020) 2.25 M 

CDCN++ (Yu et al., 2020) > 2.25 M 

Bi-FAS-S (Roy et al., 2021) > 4 M 

FAS-BAS (Liu et al., 2018) > 10 M 

DeepPixBiS (George & Marcel, 2019) > 3 M 

A-DeepPixBis (Hossain et al., 2020) > 3 M 

Dual-PADNet (Ours) 1.4 M 

 

6.3. Limitations 

It is important to acknowledge the scope and limitations defined by this dataset. The OULU-

NPU database exclusively contains print and replay attacks and does not include other critical 

attack types prevalent in modern face anti-spoofing research, such as 3D Mask Attacks, Silicone 

Masks, cosmetic Makeup Attacks, or AI-generated Deepfake Attacks. Consequently, the model 

was trained and evaluated only on the specific artifacts associated with print and replay spoofs. 

While our dual-branch approach is designed to capture a broader range of anomalies—and the 

context branch could theoretically detect cues like the visible edges of a 3D mask—its 

performance against these other attack types is unverified. We have not tested the model on other 

types of attacks, and its effectiveness against them cannot be guaranteed. This represents a clear 

limitation of the current study. Therefore, the results presented in this paper are specific to the 

print and replay attacks found in the OULU-NPU dataset. Future work should focus on 

evaluating and adapting the Dual-PADNet architecture on more diverse datasets that incorporate 

these modern attack vectors to fully validate its generalizability. 
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7. Conclusion and Future Work 

We have introduced an efficient dual-branch convolutional neural network architecture for face 

presentation attack detection. Utilizing a dual-branch architecture that processes both facial and 

contextual information, our approach effectively addresses the limitations of existing methods. 

On the OULU-NPU (Boulkenafet et al., 2017) dataset, our model achieves state-of-the-art 

performance in protocols II and III among DeepPixBis-based models. Notably, it also 

outperforms all existing models to date in protocol II. Moreover, it delivers state-of-the-art 

results in the BPCER metric for protocol I and the APCER metric for protocol II. Remarkably, 

our model stands as the smallest among all anti-spoofing models, offering superior efficiency 

without compromising performance. 

By offering an efficient and compact solution for face presentation attack detection, our model 

is particularly well-suited for deployment in industrial settings. This suitability is further 

reinforced by its state-of-the-art performance in Protocol II and competitive performance in 

Protocol I, which are the most relevant protocols for industrial access control systems, as they 

typically involve consistent camera types.  

In future work, we plan to: 

• Explore Different Weighting Factors: Investigate the impact of varying lambda in the loss 

function. 

• Extend to Other Datasets: Evaluate the model's performance on other PAD datasets to assess 

generalizability. 

• Use A-DeepPixBis (Hossain et al., 2020) Loss Function: The Angular binary cross-entropy 

Loss used in their paper achieved better results than vanilla binary cross-entropy loss. Using 

their loss function for the face pixel map might achieve better results. 

• Add a Branch for Fourier Spectra: As seen by the Bi-FPN for Face Anti-Spoofing (Roy et al., 

2021) paper, Fourier Spectra improves performance 

• Better Augmentation: We believe that augmentations are the key to ensuring generalizability. 

In fact, our model outperformed on the second protocol where lighting and camera are fixed. 

This signals that more & different augmentations might help it outperform on protocols III 

and IV 
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