
Academic Journal of Research and Scientific Publishing | Vol 7 | Issue 74

Publication Date: 5 June 2025

 www.ajrsp.com 26

ISSN: 2706-6495

RSA Encryption and Decryption Implementation in an FPGA Using Verilog HDL

Dr. Mohammad H. Awedh1*

Associate Professor, Department of Electrical and Computer Engineering, Faculty of Engineering,

King Abdulaziz University, Saudi Arabia1

Email: mhawedh@kau.edu.sa

Dr. Ahmed Mueen2

Associate Professor, Department of Computer and Information Technology, King Abdulaziz

University, Saudi Arabia 2

Email: mueen@kau.edu.sa

Abstract:

The main objective of this project is to create a hardware-based system that is capable of

encrypting plaintext and decrypting ciphertext when the public or private key and modulus n are

given. Normally, the RSA algorithm has performance limitations in software-based realizations

due to its computational difficulty in prime factorization. Our proposed design addresses this issue

by utilizing the parallel processing capabilities of FPGA architectures. For efficient cryptographic

processing, we have developed and optimized components such as modular multiplication and

modular exponentiation using Verilog HDL. The results show that FPGA-based implementations

are more suitable for secure real-time and embedded cryptographic applications as compared to

traditional software approaches. Based on the result of this research the authors recommend to

focus on optimizing cryptographic hardware for power efficiency and scalability, especially for

use in IoT and edge devices, and encouraged to explore the integration of RSA hardware modules

with other security protocols for comprehensive system-on-chip (SoC) solutions, also recommend

the educational institutions and training programs to incorporate practical FPGA-based

cryptographic projects to bridge the gap between theory and application and continuing to refine

RSA hardware implementations and exploring new architectural strategies.

Keywords: Cryptography, RSA algorithm, FPGA architecture, Real-time and Embedded

cryptographic, Hardware Description Language, UART.

http://www.ajrsp.com/
mailto:mhawedh@kau.edu.sa
mailto:mueen@kau.edu.sa

Academic Journal of Research and Scientific Publishing | Vol 7 | Issue 74

Publication Date: 5 June 2025

 www.ajrsp.com 27

ISSN: 2706-6495

1. Introduction

In modern secure communication of information systems, cryptography, the science of encoding

information to protect it from unauthorized access, plays a vital role in ensuring data integrity,

confidentiality, authentication, and non-repudiation. One of the most robustness and mathematical

soundness cryptographic algorithms is RSA (Rivest–Shamir–Adleman) (Ugbedeojo, Adebiyi,

Aroba, & Adebiyi, 2024, pp. 1–27; Vidhyalakshmi & Ramesh, 2013). RSA algorithm is introduced

in 1977, it employs asymmetric key cryptography, utilizing a pair of mathematically linked keys—

one public for encryption and one private for decryption. RSA encryption offers a secure method

for protecting sensitive information with its computational difficulty of factoring the product of

two large prime numbers. This foundation remains an effective despite recent vulnerabilities in

implementations using smaller key sizes (Zheng, 2024; Feng, Nitaj, & Pan, 2024). RSA

particularly suitable for secure key exchange and digital signatures. RSA is computationally

intensive, especially for large key sizes (Zheng, 2024). Traditional software implementations often

face performance bottlenecks, limiting their utility in real-time or resource-constrained

environments. To address these limitations, hardware-based approaches (using FPGAs) offer

significant advantages. FPGAs provide performance efficiency, parallelism and re-configurability,

making them ideal for accelerating cryptographic algorithms and increase their performance

(Zhang & Zhang, 2012).

In this paper, we present the design and implementation of an RSA encryption/decryption system

on an FPGA using Verilog HDL. The primary objective is to develop a high-performance,

hardware-optimized cryptographic engine capable of securely processing data in real-time. By

focusing on the implementation of modular multiplication and modular exponentiation, the core

operations in RSA, our work demonstrates the effectiveness of FPGA platforms in handling the

computational demands of public-key cryptography.

2. Related Work

Significant research efforts have been made on the RSA encryption algorithm using Verilog HDL

on FPGA platforms for hardware implementation. Addressing different aspects of the research,

such as performance optimization, architectural innovation, and design challenges. An encryption

engine was generated in study of Vidhyalakshmi and Ramesh (2013), focusing on key creation,

encryption, and decryption processes. The method the researchers used is right-to-left binary

exponentiation and utilizes a primality tester for random prime number generation.

http://www.ajrsp.com/

Academic Journal of Research and Scientific Publishing | Vol 7 | Issue 74

Publication Date: 5 June 2025

 www.ajrsp.com 28

ISSN: 2706-6495

They used Verilog coding for the implementation and synthesized using the Xilinx 13.2 design

suite. The results show that it is an efficient approach to RSA encryption at moderate key sizes.

The design and verification of an RSA encryption system were identified in study of Zhang and

Zhang (2012). The main goal of the research was to improve modular operation efficiency. The

study emphasized improving modular operation efficiency through Montgomery modular

multiplication.. The method and design researchers introduced have successfully decreased

computational complexity. It makes the system very suitable for real-time cryptographic

applications on FPGA platforms.

The work by Alshahrani (2017) also focused on implementing RSA using Verilog HDL. The

complete details have been given for key generation, encryption, and decryption. The study also

provided valuable details about the challenges often experienced during hardware implementation

phases.

In study of Arun and Dharani (2020), the Shift-Sub Modular Multiplication (SSMM) algorithm

was introduced. The research presents a division-free approach to modular multiplication. The

RSA cryptosystem was implemented using Verilog HDL. The result of the performance

comparison shows efficient gains in specific operational contexts by traditional Montgomery

multiplication techniques. A different mathematical approach was presented in study of Raut and

Raut (2006). The method from Ancient Indian Vedic Mathematics was employed to design the

RSA cryptosystem. This research work utilized a hierarchical overlay multiplier architecture and

a Straight Division algorithm. The system decreases hardware complexity and increases

performance when synthesized on Xilinx Spartan FPGAs. Using larger key sizes by expanding the

RSA implementation is proposed (Abid & Khan, 2019). The design is an RSA encryption

incorporating Montgomery modular multiplication using Verilog HDL, which improved

efficiency. The research provided a comprehensive hardware implementation and simulation. The

proposed approach shows the effectiveness when security is important.

A comparative study was conducted by Kochte et al. (2016), which analyzed different FPGA-

based architectures for RSA implementation. The study examines different features of concurrency

and sequential operation designs. This research work discussed in detail resource utilization and

power consumption. Research assists designers in selecting appropriate architectures based on

system requirements.

http://www.ajrsp.com/

Academic Journal of Research and Scientific Publishing | Vol 7 | Issue 74

Publication Date: 5 June 2025

 www.ajrsp.com 29

ISSN: 2706-6495

Saini (2017) presented an efficient primality testing algorithm optimized for 64-bit RSA

encryption. They have used the right-to-left binary exponentiation method. The approach is

suitable for constrained hardware environments by providing enhanced performance while

minimizing FPGA area usage. The study by Kumar and Sharma (2015) utilized Montgomery

multiplication with Block RAM (BRAM) blocks to store operands. The design achieved a suitable

and efficient RSA operation by avoiding hard-wired modulus values and dynamically managing

operands.

The above-mentioned research work collectively explains the different techniques and designs.

Studies investigated hardware implementation of RSA encryption by highlighting improvements

in speed, resource utilization, scalability, and overall system efficiency.

3. RSA Cryptographic Communication Model

The RSA Cryptographic Communication Model is a framework that explains how the RSA

cryptographic algorithm is used to ensure secure communication between two parties over an

insecure channel.

Figure 1 illustrates the fundamental working of the RSA public-key cryptographic algorithm. The

process starts when the sender wants to send a confidential message. This message is in readable

form, which is referred to as a “plaintext”. To ensure secure transmission, the plaintext is encrypted

using the receiver’s public key via the RSA encryption module. The output of this process is

ciphertext. The communication channel is used to transmit the ciphertext. This channel is supposed

to be insecure, but due to the features of RSA encryption, the message remains secure. The

ciphertext cannot be decrypted without a private key. To receive the ciphertext, the receiver uses

the RSA decipher module to convert the ciphertext back into readable plaintext. The private key,

which is kept confidential, is used during the decryption process in which it is applied to decrypt

and recover the message.

Communication

Channel
RSA

Encrypt
RSA

Decipher

Sender

Plaintex

t

Encryption Key

(public)

Decryption Key

(private)

Ciphertext

Receiver

Plaintex

t

Figure 1: RSA process model

http://www.ajrsp.com/

Academic Journal of Research and Scientific Publishing | Vol 7 | Issue 74

Publication Date: 5 June 2025

 www.ajrsp.com 30

ISSN: 2706-6495

3.1. General steps of RSA

The RSA process involves three key steps: (Educative.io, 2025)

1. Key Generation: In this step, the public, (𝑒, 𝑛), and private key, (𝑒, 𝑛), are created. Two large

prime numbers, 𝑝 and 𝑞 are generated. Then, we compute 𝑛 = 𝑝 × 𝑞 where 𝑛 is used as the

modulus for both the public and private keys. Then, we calculate Euler’s totient function:

𝜙(𝑛) = (𝑝 − 1)(𝑞 − 1).

Next, we choose a public exponent 𝑒, where 1 < 𝑒 < 𝜙(𝑛) and 𝑒 must be co-prime to 𝜙(𝑛) (i.e.,

𝑔𝑐𝑑(𝑒, 𝜙(𝑛)) = 1). Then, we compute the private exponent 𝑑 ≡ 𝑒−1𝑚𝑜𝑑  𝜙(𝑛). In other

words, 𝑑 is the modular multiplicative inverse of 𝑒 𝑚𝑜𝑑𝑢𝑙𝑜 𝜙(𝑛).

2. Encryption: Given a plaintext message 𝑀 (as an integer), using the public key (𝑒, 𝑛), we

compute the ciphertext 𝐶 as:

𝐶 = 𝑀𝑒 𝑚𝑜𝑑  𝑛

3. Decryption: To recover the original message 𝑀 from the ciphertext 𝐶, we use the private key

(𝑑, 𝑛):

𝑀 = 𝐶𝑑 𝑚𝑜𝑑  𝑛

Since RSA is considered an Asymmetric key procedure, its security relies partially on the

fact that it's easy to choose two random prime numbers, but it's very hard to discover what

they are when just given the product of them.

Therefore, typical key sizes are 1,024 or 2,048, or 4,096 bits, unlike Symmetric keys, which

are much smaller. The reason RSA is large is that's because there are only so many prime

numbers of that size and below. The RSA scheme can only use pairs of prime numbers,

whereas the symmetric schemes can use any number of the same size (Educative.io, 2025).

But for the sake of simplicity and practicality, we used a small key length in the code.

3.2. Black Box Design

To implement a secure RSA cryptographic system in hardware, both the encryption and decryption

algorithms need to be translated into a form that can be executed on digital circuits. This is

achieved using Verilog HDL (Hardware Description Language). Figure 2 illustrates the basic I/O

of our design, which utilizes the two control signals “go & done” and a reset signal to abort

operations, and of course, a clock.

http://www.ajrsp.com/

Academic Journal of Research and Scientific Publishing | Vol 7 | Issue 74

Publication Date: 5 June 2025

 www.ajrsp.com 31

ISSN: 2706-6495

The main I/O here are the mode, key, Input, and Output.

Mode: will control which state the digital circuit should be in, either Encryption state or

Decryption state.

Key: is the key pair, it depends on whether the Encryption/Decryption mode is chosen.

Input: is going to be either Plaintext or ciphertext, depending on whether Encryption / Decryption

mode is chosen.

Output: is going to be either Ciphertext or Plaintext, it depends on whether Encryption /

Decryption mode is chosen.

In Figure 3 RSA encryptor takes the encryption key, a mode selection, reset, a 'go' signal to initiate

encryption, and a clock signal for synchronization as inputs for plaintext. The encryptor produces

ciphertext as its main output and a 'done' signal to indicate completion of the encryption process.

Figure 3: Black Box Design in Encrytion state

Figure 2: General Black Box Design

http://www.ajrsp.com/

Academic Journal of Research and Scientific Publishing | Vol 7 | Issue 74

Publication Date: 5 June 2025

 www.ajrsp.com 32

ISSN: 2706-6495

Figure 4 depicts the RSA decryptor module, which accepts an encrypted message as input

(Ciphertext), private key (Decryption Key), control signals (Mode, reset, go, clock) as inputs. The

decryptor produces an unencrypted message (Plaintext) as output and indicates done as

completion.

3.3. Control Unit Implementation using One-Address ROM

Table 1 presents our control unit implemented using a One-Address Read-Only Memory (ROM).

The table explains the control logic based on the current state and the input test conditions by

identifying the next state and the control signals.

In the control unit, the current state “AB” and the input test condition “TEST” both produce the

address to the ROM. The contents of the ROM store the next state “NST” and all the values for

the control signals Load, Running, and Done. For example, if the current state S1 is ‘01’ and the

test input is ‘10’, then the ROM is addressed with ‘0110’. The next state S2 would be ‘10’ followed

by the control signal values '1', '0', and '0'."

3.4. RSA Encryption Decryption System

The RSA encryption and decryption system is an important component of secure digital

interactions due to its mathematical foundation and good track record. In our system, we first

establish Universal Asynchronous Receiver-Transmitter (UART) communication with the FPGA

Figure 4: Black Box Design in Decrytion state

Table 1: Control Unit One Address ROM table

http://www.ajrsp.com/

Academic Journal of Research and Scientific Publishing | Vol 7 | Issue 74

Publication Date: 5 June 2025

 www.ajrsp.com 33

ISSN: 2706-6495

for the implementation of the RSA algorithm, as shown in Figure 5. The UART provides a serial

communication protocol that helps us to send commands to the FPGA and receive the results of

the RSA operations.

After establishing the UART communications, the mode buttons get activated. The “Generate

Mode” is where the keys are generated and the plaintext is encrypted with the private key, and the

public key is printed onto an RFID key. We choose the prime numbers bit size from the radio

buttons in the generate mode window and click the “Generate keys” button to create the key pairs

needed, as shown in Figure 6.

Figure 5: UART communications with the RSA FPGA

Figure 6: Generate window

http://www.ajrsp.com/

Academic Journal of Research and Scientific Publishing | Vol 7 | Issue 74

Publication Date: 5 June 2025

 www.ajrsp.com 34

ISSN: 2706-6495

We can enter our desired plaintext and press “Encrypt,” which will transfer its integer value over

to the FPGA to be encrypted. Then we can press the “Upload Data” Button to post our ciphertext

on the cloud as in Figure 7.

In the attempt mode, the user can go over to another computer and do the same steps for

establishing UART communication with the FPGA. Pressing “Fetch” in the attempt window will

fetch the ciphertext from the cloud and display it as shown in Figure 8.

Figure 7: Encrypt message window

Figure 8: Attempt window

http://www.ajrsp.com/

Academic Journal of Research and Scientific Publishing | Vol 7 | Issue 74

Publication Date: 5 June 2025

 www.ajrsp.com 35

ISSN: 2706-6495

Then pressing the “Read Key” button when placing an RFID Tag over the Reader decodes the

public key on it, as shown in Figure 9.

Finally, in Figure 10, with the public key at hand and the ciphertext, we can decrypt our message

by sending the data over to the FPGA and receiving back the integer, which will be converted to

a readable string plaintext.

Figure 10: Decrypt message

4. Conclusion and Recommendations:

In this work, we have implemented the RSA algorithm on an FPGA using Verilog HDL. Our

research focus was to develop a hardware-based system that can efficiently handle the

computational requirements of RSA, mainly modular multiplication and exponentiation. The result

shows that FPGA-based implementations have an advantage over software-based approaches for

real-time and embedded cryptographic applications.

Figure 9: Public key read

http://www.ajrsp.com/

Academic Journal of Research and Scientific Publishing | Vol 7 | Issue 74

Publication Date: 5 June 2025

 www.ajrsp.com 36

ISSN: 2706-6495

Recommendations:

- The research community must focus on optimizing cryptographic hardware for power efficiency

and scalability, especially for use in IoT and edge devices.

- Researchers are encouraged to explore the integration of RSA hardware modules with other

security protocols for comprehensive system-on-chip (SoC) solutions.

- Future research can investigate implementing RSA with larger key sizes or combining it with

other cryptographic algorithms such as AES to enhance performance and security in hybrid

systems.

- In digital system design, educational institutions and training programs should incorporate

practical FPGA-based cryptographic projects to bridge the gap between theory and application.

The research community can contribute to more efficient, secure, and practical cryptographic

systems by continuing to refine RSA hardware implementations and exploring new architectural

strategies.

5. References

Abid, H., & Khan, M. F. (2019). 1024-bit RSA encryption algorithm design using Verilog and

FPGA implementation. International Journal of Engineering and Advanced Technology

(IJEAT), 8(5).

Alshahrani, A. (2017). Implementation of RSA in Verilog. California State University,

ScholarWorks Projects.

Arun, T. P., & Dharani, V. (2020). Verilog HDL implementation for an RSA cryptography using

shift-sub modular multiplication. Journal of Intelligent and Fuzzy Systems, 17(3).

Educative.io. (2025). What is the RSA algorithm. Retrieved April 10, 2025, from

https://www.educative.io/answers/what-is-the-rsa-algorithm

Feng, Y., Nitaj, A., & Pan, Y. (2024). Partial prime factor exposure attacks on some RSA variants.

Theoretical Computer Science, 999, 114549.

Kochte, M. A., et al. (2016). Comparison of high concurrency and sequential architectures for

RSA on FPGAs. In Proceedings of the Design, Automation & Test in Europe Conference &

Exhibition (DATE).

Kumar, M., & Sharma, S. (2015). Efficient RSA implementation using block RAMs and

Montgomery multiplication. International Journal of Computer Applications, 111(4).

http://www.ajrsp.com/

Academic Journal of Research and Scientific Publishing | Vol 7 | Issue 74

Publication Date: 5 June 2025

 www.ajrsp.com 37

ISSN: 2706-6495

Raut, R., & Raut, S. (2006). VLSI implementation of RSA encryption system using ancient Indian

Vedic mathematics. arXiv preprint arXiv:cs/0609028.

Saini, C. S. (2017). Design and FPGA implementation of 64-bit RSA cryptosystem. International

Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control

Engineering, 5(4).

Ugbedeojo, M., Adebiyi, M. O., Aroba, O. J., & Adebiyi, A. A. (2024). RSA and elliptic curve

encryption system: A systematic literature review. International Journal of Information

Security and Privacy, 18, 1–27.

Vidhyalakshmi, S., & Ramesh, N. (2013). Cryptosystem: An implementation of RSA using

Verilog. International Journal of Computer Applications, 64(17).

Zhang, L., & Zhang, H. (2012). RSA encryption algorithm design and verification based on

Verilog HDL. In Proceedings of the 2nd International Conference on Computer Science and

Electronic Technology.

Zheng, M. (2024). Revisiting small private key attacks on common prime RSA. IEEE Access, 12,

5203–5211.

Copyright © 2025 Dr. Mohammad H. Awedh, Dr. Ahmed Mueen, AJRSP.

This is an Open-Access Article Distributed under the Terms of the Creative Commons

Attribution License (CC BY NC)

Doi: doi.org/10.52132/Ajrsp.e.2025.74.2

http://www.ajrsp.com/
https://doi.org/10.52132/Ajrsp.e.2025.74.2

