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Abstract: 

In this paper we note the numerical methods for solving fractional differential equations, defined 

in the derivative of the Caputo-Fabrizio fractional operator and Laplace transform of fractional 

derivatives for integer order, solving differential equation problems using the Laplace transform 

method, and reducing to Volterra's integral equation, Laplace transform of the Mittage–Leffler 

function, this problem is not easy to solve analytically because an analytical solution is 

sometimes not available, even if an analytical solution is available, but it is complected, time-

consuming and expensive, so we need to develop a numerical method to address the relevant 

problem, Analyze a precise result such as the integral or exact expression of a solution to obtain 

a qualitative answer that shows us what is happening with each variable while numerical 

methods are more adaptable in the approximate result to obtain quantitative results by iteratively 

creating an approximate solution sequence for mathematical problems. The method will solve a 

non-homogeneous linear differential equation directly, following basic steps, without having to 

solve the integral equation and solutions separately and non-linear differential equations with the 

rational factor by developing analytical or numerical techniques to find approximate solutions. 

Finally, we studied some applications, especially for nonlinear differential equations with the 

rational operator. 

Keywords: Laplacian Transform Interpretation, fractional Caputo–Fabrizio derivative operator, 

the Volterra Integral Equation, Existence and uniqueness, Iterative Laplace transform method. 
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1. Introduction 

 The mathematical models involving fractional derivatives were given noticeable importance 

because they are more accurate and realistic as compared to the classical order models [1,2]. 

Fractional differential equation, particularly fractional calculus equation and derivatives of 

functions gamma function while investigating the interpolation problem. There are several 

approaches leading to the definition of gamma function. However, this in Mathematics we are 

not looking at the usual integer order but at the non-integer order differential, and derivatives [3]. 

The Riemann–Liouville fractional differential operators have played a significant role in the 

development of the theory of differentiation and integration of arbitrary order, the Method of 

Volterra Integral Equation, Laplace transform of the Mittage–Leffler function, we introduced the 

series which converges to the solution of an initial-value to Volterra integral problem [4]. These 

are called fractional derivatives and fractional integrals, which can be of real or complex integer, 

and therefore also include integer orders. In this study, we refer if we are talking about the 

combination of these fractional derivatives has significant applications. Motivated by the 

advancement of fractional calculus, These differential equations involve several fractional 

differential operators like Riemann–Liouville, Caputo, [5], and modeling of materials and 

diffusion and expansion processes [6]. To avoid these problems, we find that the fractional 

partial differential operator has a substitution kernel with exponential decay [7]. Operator is best 

suited for modeling some classes as follows: 

{

𝐷𝑡0
𝛼 𝑦(𝑡)

𝑦(𝑡0)

                                                                          (1) 

To confirm the existence and uniqueness of the solution to problem (1) suppose that 𝑓(𝑥, 𝑦). The 

function is continuous and fulfills Lipschitz's condition with respect to the second variable [8]. 

The initial value problem (1) can be transformed into an equivalent Volterra integral equation. 

𝑦(𝑡) = 𝑦0 +
1

Γ(𝛼)
∫(𝑡 − 𝑥)𝛼−1

𝑡

𝑡0

𝑓(𝑥, 𝑦(𝑥))𝑑𝑥              (2) 

 

http://www.ajrsp.com/


Academic Journal of Research and Scientific Publishing | Vol 5 | Issue 54       

Publication Date: 05-10-2023 

 

  
  
 

  

   www.ajrsp.com                                                                                                                                       92  

ISSN: 2706-6495 

  
2.  Definition of fractional calculus 

We reviewed some definitions of the fractional partial derivative and the fractional integral. One 

should note that trigonometric functions of order 𝑛 are generalizations of the sine and cosine 

functions of fractional calculus. 

Definition 2.1 Fractional calculus is used for integrals and fractional partial derivatives [9]. It 

can be said that the order of numbers is truly arbitrary or even the order of a complex number. 

There are many definitions of the partial and integral derivation, such as we described. Other 

definitions can be found in [10,11]. Here we use 𝐷 and 𝐼 to denote the fractional derivative and 

the fractional integral, respectively. 

Definition 2.2 It can be generalized that the integer-order classical partial derivation, which is 

used for continuous function 𝑓(𝑡) is. 

𝑓(𝑛)(𝑡) = lim
ℎ→0

1

ℎ2
∑(−1)𝑖

𝑛

𝑟=0

(
𝑛
𝑖

) 𝑓(𝑡 − 𝑖ℎ),                                                   (4) 

Where (
𝑛
𝑟

) is the binomial coefficients. If 𝑛 is replaced by 𝛼 ∈ ℝ we get  

𝐷𝛼,𝑡
𝛼 𝑓(𝑡) = lim

ℎ→0+

1

ℎ𝛼
∑(−1)𝑖

𝑡−𝛼
ℎ

𝑟=0

(
𝛼
𝑖

) 𝑓(𝑡 − 𝑖ℎ),                                         (5) 

where we denote the base function and the 𝛼 denotes the starting point of the interval. 

Definition 2.3 The Grünwald-Letnikov integral of arbitrary order is: 

𝐼𝛼,𝑡
𝛼 𝑓(𝑡) lim

ℎ→0+

1

ℎ𝛼
∑(−1)𝑖

𝑡−𝛼
ℎ

𝑟=0

(
𝛼
𝑖

) 𝑓(𝑡 − 𝑖ℎ),                                                     (6) 

Definition 2.4 Riemann-Liouville. The 𝛼𝑡ℎ order Riemann-Liouville derivative of function is. 

𝐷𝛼,𝑡
𝛼 𝑓(𝑡) =

1

Γ(𝑛 − 𝛼)
 

𝜕𝑛

𝜕𝑡𝑛
 ∫

𝑓(𝑥) 𝑑𝑥

(𝑡 − 𝑥)1−𝛼

𝑡

𝛼

,                                                      (7) 

And the integral  

𝐼𝛼,𝑡
𝛼 𝑓(𝑡) =

1

Γ(𝛼)
∫

𝑓(𝑥) 𝑑𝑥

(𝑡 − 𝑥)1−𝛼

𝑡

𝛼

                                                                         (8) 
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Definition 2.5 The Riemann-Liouville definition is important for the development of fractional 

derivatives, but it is difficult to calculate the integral with physically explicable elementary 

points. [12] Caputo solved this issue by creating a new definition. 

𝐷𝛼,𝑡
𝛼 𝑓(𝑡) =

1

Γ(𝑛 − 𝛼)
 ∫(𝑡 − 𝑥)𝑛−𝛼−1

𝜕𝑛𝑓(𝑥) 

𝜕𝑥𝑛

𝑡

𝛼

 𝑑𝑥,   𝑛 − 1 < 𝛼 < 𝑛     (9) 

 

 3.  Numerical and Analytical methods 

There are different ways to solve fractional differential equations analytically. One of the most 

popular and widely used methods is the Laplace transformation. Below, for example, this 

method is described [13]. Before continuing, it should be noted that in general, the number of 

initial conditions required for a partial differential equation will depend on the order of the 

differential equation. However, in a fractional differential equation, the number of the initial 

condition is equal to the minimum integer order value 𝛼 [14,15]. Consider the following 

differential equation.  

𝑥𝐷𝑡
𝛼𝑦(𝑡) + 𝐾𝑦(𝑡) = 𝑓(𝑡)                                                                              (10) 

Which 𝑦(𝑡) is displacement, 𝑘, and 𝜏 are constants, as well as the fractional derivative is also 

Caputo and 0 < 𝛼 < 1. In what follows, it has been shown that this partial differential equation 

model is the dynamics of a purely elastic spring and a viscoelastic element connecting in parallel 

with a body of mass m, which a force f is applied on a body.[9] To solve, the first step is to take 

the Laplace transformation of both sides of the original partial differential equation, the Laplace 

transformation is concisely explained. we have: 

𝑌(𝑠) =
𝑓(𝑡)

𝑥(𝑠𝛼 + 𝑘/𝑥)
                                                                                     (11) 

where 𝛼 and 𝑠 are fractional order and Laplace domain variable respectively. Also, it is supposed 

that 𝑥(0)  =  0. To find the solution, all we need to do is to take the inverse transform: 

 

𝑦(𝑡) =
𝑓(𝑡)

𝑥
𝑡(𝛼−1)𝐸𝛼,𝛼(𝑡) (−

𝑘

𝑥
𝑡𝛼)                                                             (12) 
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Which 𝐸𝛼,𝛼 (𝑡) is Mittag-Leffler function, if the spring is ignored, the equation (10) will be 

reduced to 

𝑓(𝑡) = 𝑥𝐷𝑡
𝛼𝑦(𝑡)                                                                                                 (13) 

We taking the Laplace transforms of both sides of the equation, simplifying algebraically the 

result to solve the obtained equation in terms of 𝑠, and c finally finding the inverse transform, we 

have: 

𝑦(𝑡) = 𝐾𝑡𝛼                                                                                                         (14) 

Which 𝐾 = 𝑓/𝑥Γ(𝛼 + 1). Although the Laplace transformation method is one of the simple and 

practical methods for solving the fractional equations same as the partial differential equations, 

most of the fractional equations could not be solved analytically. In what follows, we present a 

numerical technique to solve Caputo fractional differential equation. So numerical simulations of 

fractional differential equations need a larger number of floating-point operations and data flow 

in computer memory systems. This is because, as pointed out by [16], specific additional 

conditions are needed to solve a differential equation to obtain a unique solution. These 

additional conditions for the Riemann–Liouville fractional derivative constitute a certain 

fractional derivative of unknown solution at the initial points which might result in an unclear 

physical meaning. Due to this reason, in the present work, we consider the fractional Caputo’s. 

𝑦𝑘
𝑝(𝑡) = 𝑦0(𝑡) +

1

Γ(𝛼)
∑ 𝑏𝑗,𝑘

𝑘−1

𝑗=0

𝑓(𝑡𝑗 , 𝑦𝑗),                                                              (15) 

4.  Laplacian Transform Interpretation 

Suppose that 𝑌(𝑡) is a quantity whose value in terms of 𝑓(𝑡, 𝑦)  can be achieved as follows: 

𝑌(𝑡) = ∫
(𝑡 − 𝑥)(𝛼−1)

Γ(𝛼)
 𝑓(𝑥)𝑑𝑥

𝑡

0

                                                                              (16) 

The output 𝑌(𝑡) can be viewed as a power-weighted sum which stores the previous input of 

function 𝑓(𝑥). Based on the above definition, such system is a non-memoryless system and, in 

such systems, memory decays at the rate of 𝑦𝑘
𝑝

(𝑡)  = 𝑡𝛼 −
1

Γ(𝛼)
. 

Applying the Caputo derivative of order 𝛼 to both sides of the last relation led to  

𝐷𝑡
𝛼𝑌(𝑡) = 𝑓(𝑡)                                                                                                               (17) 
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As a result, the differential equation governing the system memory 𝑌(𝑡) is described by a 

fractional derivative [17]. Therefore, the fractional derivative is a good candidate to explain the 

system with memory. The nature of weighted function determines the type of fractional 

derivative which describes a system memory. For example, If the weight function of a system is 

defined by 𝑡1−𝛼 ∕ Γ(𝛼) , the Riemann Liouville elements, and by 𝑡1−𝛼 𝜃(𝑥 − 𝑡) ∕  Γ(𝛼) the 

Caputo elements are used which 𝜃 is the Heaviside function [18]. 

Definition 4.1 Let 𝑓(𝑡) be defined for 𝑡 ≥ 0. The Laplace transform of 𝑓(𝑡), denoted 

by 𝐹(𝑠) or ℒ(𝑓(𝑡)), is an integral transform given by the Laplace integral: 

𝐹(𝑠) = ℒ(𝑓(𝑡)) = ∫ 𝑒−𝑠𝑡

∞

0

𝑓(𝑡)𝑑𝑡                                                                      (18)  

Theorem 4.1 The Laplace transform of the Mittage–Leffler function is given by the equation 

[19]: 

ℒ−1 (
𝑠−(𝛾−𝛼)

𝑠𝛼 − 𝑦
) = 𝑡𝛾−1𝐺𝛼,𝛾(𝑦𝑡𝛼),     |𝑠𝛼 − 𝑦| < 1 

Proof. Using the definition of the Laplace transform, we have: 

ℒ (𝑡𝛾−1𝐺𝛼,𝛾(𝑦𝑡𝛼)) = ∫ 𝑒−𝑠𝑡𝑡𝛾𝐺𝛼,𝛾(𝑦𝑡𝛼)𝑑𝑡

+∞

0

= ∑
𝑦𝑖

Γ(𝛼𝑖 + 𝛾)
= ∫ 𝑒−𝑠𝑡  𝑡𝛼𝑖+𝛾−1

+∞

0

 𝑑𝑡

+∞

𝑖=1

   (19) 

From this equation we get 

∑
𝑦𝑖

Γ(𝛼𝑖 + 𝛾)
ℒ(𝑡𝛼𝑖+𝛾−1) = ∑

𝑦𝑖

Γ(𝛼𝑖 + 𝛾)
 
Γ(𝛼𝑖 + 𝛾)

𝑆𝛼𝑖+𝛾
=

1

𝑆𝛾
 ∑ (

𝑦

𝑆𝛼
)

𝑖
+∞

𝑖=0

+∞

𝑖=0

+∞

𝑖=0

               (20) 

In this series above converges from |
𝑦

𝑆𝛼| < 1, hence, 

ℒ (𝑡𝛾−1𝐺𝛼,𝛾(𝑦𝑡𝛼)) =
𝑆−𝛾

1 −
𝑦

𝑆𝛼

= [
𝑆−(𝛾−𝛼)

𝑆𝛼 − 𝑦
].                                                          (21) 

4.1. Laplace transform of fractional derivatives for integer order 

If 𝑓 is of integer order, and 𝑓 is continuous and 𝑓0 is piecewise continuous on all interval [20]. 
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 0 ≤  𝑡 ≤ 𝑏 : Then: 

ℒ(𝑓′(𝑡)) = 𝑆ℒ(𝑓(𝑡)) − 𝑓(0) 

Applying the theorem multiple times yields 

ℒ(𝑓′′(𝑡)) = 𝑆2ℒ(𝑓(𝑡)) − 𝑆𝑓(0) − 𝑓′(0) 

ℒ(𝑓′′′(𝑡)) = 𝑆3ℒ(𝑓(𝑡)) − 𝑆2𝑓(0) − 𝑓′(0) − 𝑓′′(0) 

.

.

.
 

ℒ (𝑓(𝑛)(𝑡)) = 𝑆𝑛ℒ(𝑓(𝑡)) − 𝑆𝑛−1𝑓(0) − 𝑆𝑛−2𝑓′(0) − 𝑆𝑛−3𝑓′′(0) − ⋯ − 𝑆2𝑓(𝑛−3)(0)

− 𝑆𝑓(𝑛−2)(0) − 𝑓(𝑛−1)(0)                                                             (22) 

Significantly, we say that the Laplace transform, when applied to differential equations, will 

change the derivatives into algebraic expressions in terms of s and the dependent variable 𝑡. 

Thus, the Laplace transform can convert a differential equation into an algebraic equation. 

4.2. Laplace Transform of Fractional Differential Operators 

Definition 4.2 Caputo Fractional Derivative 

Assume that the function 𝑓 ∈ ℂ𝑛[𝑎, 𝑏], 𝛼 ≥ 0 and 𝑛 − 1 < 𝑎 ≤ 𝑛. Then we have  

𝐷𝛼𝑓(𝑡) =
1

Γ(𝑛 − 𝛼)
∫(𝑡 − 𝑥)𝑛−𝛼−1  

𝜕𝑛𝑓(𝑥)

𝜕𝑥𝑛
 𝑑𝑥,   𝑎 ≤ 𝑡 < 𝑏

𝑡

𝑎

 

=
1

Γ(𝑛 − 𝛼)
∫  

𝑓𝑛(𝑥)

(𝑡 − 𝑥)𝛼+1−𝑛
 𝑑𝑥.

𝑡

0

                                                      (23) 

Definition 4.3.  The 𝛼𝑡ℎ order Riemann-Liouville derivative of function is. 

𝐷𝛼,𝑡
𝛼 𝑓(𝑡) =

1

Γ(𝑛 − 𝛼)
 

𝜕𝑛

𝜕𝑡𝑛
 ∫

𝑓(𝑥) 𝑑𝑥

(𝑡 − 𝑥)1−𝛼

𝑡

𝛼

,                                    (24) 

and the integral  
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𝐼𝛼,𝑡
𝛼 𝑓(𝑡) =

1

Γ(𝛼)
∫

𝑓(𝑥) 𝑑𝑥

(𝑡 − 𝑥)1−𝛼

𝑡

𝛼

                                                        (25) 

Lemma 4.1. The Laplace transform of Riemann-Liouville fractional integral operator 

of order 𝛼 > 0 can be obtained in the form: 

ℒ(𝐼𝑛𝑓(𝑡)) =
𝐹(𝑠)

𝑆𝛼
                                                                                   (26) 

Where 𝐼𝑛 is the 𝛼 integral.  

Proof. The Laplace transform of Riemann-Liouville fractional integral operator of order 

𝛼 > 0 is get:  

ℒ(𝐼𝑛𝑓(𝑡)) = ℒ (
1

Γ(𝛼)
∫(𝑡 − 𝑥)𝛼−1𝑓(𝑥)𝑑𝑥

𝑡

0

) =
1

Γ(𝛼)
𝐹(𝑠)𝐺(𝑠) 

Where is: 

𝐺(𝑠) = ℒ(𝑡𝛼−1) =
Γ(𝛼)

𝑆𝛼
 

And hence  

ℒ(𝐼𝑛𝑓(𝑡)) =
1

Γ(𝛼)
 
Γ(𝛼)

𝑆𝛼
 𝐹(𝑆) =

𝐹(𝑠)

𝑆𝛼
. 

Lemma 4.2. The Laplace transform of Caputo fractional derivative for 

 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ ℕ, can be obtained in the form of [21, 22]: 

ℒ(𝐷𝑡
𝛼𝑓(𝑡)) =

𝑡𝑚𝑓(𝑡) − 𝑡𝑚−1𝑓(0) − 𝑡𝑚−2𝑓′(0) − ⋯ − 𝑓(𝑚−1)(0)

𝑡𝑚−𝛼
                       (27) 

Proof. The Laplace transform of Caputo fractional derivative of order 𝛼 > 0 is: 

ℒ(𝐷𝑡
𝛼𝑓(𝑡)) = ℒ (𝐼𝑚−𝛼𝑓(𝑚)(𝑡)) =

ℒ (𝑓(𝑚)(𝑡))

𝑆𝑚−𝛼
                                                             (28) 

We are ready to see how the Laplace transform can be used in differentiation equations. 
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4.3. Solving differential equation problems using the method of Laplace transform: 

To solve a linear differential equation using Laplace transforms, there are only 3 basics steps: 

1. Take the Laplace transforms of both sides of an equation. 

2. Simplify algebraically the result to solve for ℒ(𝑓(𝑡)) = 𝐹(𝑠)  in terms of 𝑠. 

3. Find the inverse transform of 𝐹(𝑠). This inverse transform, 𝑓(𝑡), is the solution of the 

given differential equation. [20,21]. 

Example 4.1. We Consider the following differential equation: 

{

𝑦′′ + 5𝑦′ + 6𝑦 = 0                  

𝑦(0) = 2,         𝑦′(0) = 1          
 

We transform both sides.  

ℒ(𝑦′′)(𝑠) + 5ℒ(𝑦′)(𝑠) + 6ℒ(𝑦)(𝑠) = 0 

From the equations (22), (28) to find 𝐹(𝑠) = ℒ(𝑦) 

𝑠2ℒ(𝑦)(𝑠) − 2𝑠 − 1 + 5(𝑠ℒ(𝑦)(𝑠) − 2) + 6ℒ(𝑦)(𝑠) = 0 

Find the value  

ℒ−1 (
2𝑠 + 11

𝑠2 + 5𝑠 + 6
) (𝑡) 

2𝑠 + 11

𝑠2 + 5𝑠 + 6
=

𝐴

𝑠 + 3
+

𝐵

𝑠 + 2
=

𝑠(𝐴 + 𝐵) + (2𝐴 + 3𝐵)

(𝑠2 + 5𝑠 + 6)
 

Divide the equation using partial fractions. 

2𝑠 = 𝑠(𝐴 + 𝐵) + 2𝐴 + 3𝐵 

{
𝐴 + 𝐵 = 2        

2𝐴 + 3𝐵 = 11
 

2𝐴 + 3𝐵 − (2𝐴 + 2𝐵) = 11 − 2 × 2 ⟹ 𝐵 = 7 

And  𝐴 = 2 − 𝐵 = 2 − 7 = −5 
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2𝑠 + 11

𝑠2 + 5𝑠 + 6
=

−5

𝑠 + 3
+

7

𝑠 + 2
 

 

ℒ−1 (
2𝑠 + 11

𝑠2 + 5𝑠 + 6
) (𝑡) = ℒ−1 (

−5

𝑠 + 3
+

7

𝑠 + 2
) (𝑡) 

−5ℒ−1 (
1

𝑠 + 3
) + 7ℒ−1 (

1

𝑠 + 2
) (𝑡) = −5𝑒−3𝑡 + 7𝑒−2𝑡 

ℒ(𝑦′′)(𝑠) = 𝑠2ℒ(𝑦)(𝑠) − 𝑠𝑦(0) − 𝑦′(0) = 𝑠2ℒ(𝑦)(𝑠) − 2𝑠 − 1 

ℒ(𝑦′)(𝑠) = 𝑠ℒ(𝑦)(𝑠) − 𝑦(0) = 𝑠ℒ(𝑦)(𝑠) − 2 

We apply the Laplace transform to the differential equation. 

ℒ(𝑦′′)(𝑠) + 5ℒ(𝑦′)(𝑠) + 6ℒ(𝑦)(𝑠) = 0 

𝑠2ℒ(𝑦)(𝑠) − 2𝑠 − 1 + 5(𝑠ℒ(𝑦)(𝑠) − 2) + 6ℒ(𝑦)(𝑠) = 0 

Then, 

(𝑠2 + 5𝑠 + 6)ℒ(𝑦)(𝑠) = 2𝑠 + 11 

So 

ℒ(𝑦)(𝑠) =
2𝑠 + 11

𝑠2 + 5𝑠 + 6
 

Example 4.2. We Consider the following partial differential equation: 

{

𝜕𝑢

𝜕𝑥
= 2

𝜕𝑢

𝜕𝑡
+ 𝑢                     𝑥 ≥ 0, 𝑡 ≥ 0    

𝑢(𝑥, 0) = 6𝑒−3𝑥                                                      

 

Given 𝑢(𝑥, 𝑡) is boundary function for all 𝑥 ≥ 0, and 𝑡 ≥ 0 

We apply the Laplace transform to the partial differential equation. 

ℒ (
𝜕𝑢

𝜕𝑥
) = 2ℒ (

𝜕𝑢

𝜕𝑡
) + ℒ(𝑢) 

Assume ℒ(𝑢) = 𝑉(𝑥, 𝑠) 
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Then, 

𝑑

𝑑𝑥
(𝑉(𝑥, 𝑠)) = 2[𝑠𝑉(𝑥, 𝑠) − 𝑢(𝑥, 0)] + 𝑉(𝑥, 𝑠) 

⟹
𝑑

𝑑𝑥
(𝑉(𝑥, 𝑠)) = 2𝑠𝑉(𝑥, 𝑠) − 12𝑒−3𝑥 + 𝑉(𝑥, 𝑠) 

⟹
𝑑

𝑑𝑥
(𝑉(𝑥, 𝑠)) − (2𝑠 + 1)𝑉(𝑥, 𝑠) = −12𝑒−3𝑥 

The last equation is an ordinary differential equation.  

Example 4.3. We Consider the following differential equation: 

{
𝑦′ + 2𝑦 = 2𝑡𝑒−2𝑡

𝑦(0) = −3             

 

We transform both sides.  

ℒ(𝑦′) + ℒ(2𝑦) = ℒ(4𝑒−2𝑡) 

𝑠ℒ(𝑦) − 𝑦(0) + 2ℒ(𝑦) =
2

(𝑠 + 2)2
 

To find 𝐹(𝑠) = ℒ(𝑦) 

𝑠ℒ(𝑦) − (−3) + 2ℒ(𝑦) =
4

(𝑠 + 2)2
 

ℒ(𝑦)(𝑠 + 2) + 3 =
4

(𝑠 + 2)4
 

ℒ(𝑦)(𝑠 + 2) =
2

(𝑠 + 4)2
− 3 

ℒ(𝑦) =
4

(𝑠 + 2)3
−

3

(𝑠 + 2)
=

4 − 3(𝑠 + 2)2

(𝑠 + 2)3
=

−3𝑠2 − 12𝑠 − 8

(𝑠 + 2)3
 

Divide the equation using partial fractions. 

ℒ(𝑦) =
−3𝑠2 − 12𝑠 − 8

(𝑠 + 2)3
=

𝐴

(𝑠 + 2)3
+

𝐵

(𝑠 + 2)2
+

𝐶

(𝑠 + 2)
=

𝐴 + 𝐵(𝑠 + 2) + 𝐶(𝑠 + 2)2

(𝑠 + 2)3
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−3𝑠2 − 12𝑠 − 8

(𝑠 + 2)3
=

𝐴 + 𝐵𝑠 + 2𝐵 + 𝐶𝑠2 + 4𝐶𝑠 + 4𝐶

(𝑠 + 2)3
 

−3𝑠2 − 12𝑠 − 8

(𝑠 + 2)3
=

𝐶𝑠2 + (𝐵 + 4𝐶)𝑠 + (𝐴 + 2𝐵 + 4𝐶)

(𝑠 + 2)3
 

By equating the comparison for both fractions, we obtain: 

𝐶 = −3,    (𝐵 + 4𝐶) = −12,     (𝐴 + 2𝐵 + 4𝐶) = −8 

Solving the above system, we obtain 

𝐶 = −3, 𝐴 = 4, 𝐵 = 0 

Now, by substituting the values in the expression of  ℒ(𝑦),  we obtain. 

ℒ(𝑦) =
−3𝑠2 − 12𝑠 − 8

(𝑠 + 2)3
=

4

(𝑠 + 2)3
−

3

(𝑠 + 2)
⟹ 𝑦(𝑡) = 4ℒ−1 (

1

(𝑠 + 2)3
) − 3ℒ−1 (

1

(𝑠 + 2)
) 

And hence  

𝑦(𝑡) = 4𝑡2𝑒−2𝑡 − 3𝑒−2𝑡 

In the next section, we will discuss how to solve differential equation problems for nonlinear 

fractions order for The Volterra Integral Equation. 

5. The Volterra Integral Equation 

This method introduced the series which converges to the solution of an initial-value problem. 

For the initial-value problem with the Riemann-Liouville derivative (24) appropriate sequence 

can be calculated in the following way. [10,15]: 

𝑦0(𝑡) = ∑
𝑏𝑠

Γ(𝛼 − 𝑆 + 1)
 

𝑛

𝑠=1

(𝑡 − 𝑎)𝛼−𝑆                                                                       (29) 

𝑦𝑖(𝑡) = 𝑦0(𝑡) +
1

Γ(𝛼)
∫(𝑡 − 𝜇)𝛼−𝑆

𝑡

𝑎

𝑓(𝜇, 𝑦𝑖(𝜇))𝑑𝜇                                                     (30) 

Where n is the number of initial conditions, 𝑖 = 1, 2, 3, . .. and 𝑓(𝜇, 𝑦𝑖(𝜇)) is the right-hand 

side of the equation. Hence the solution is: 
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𝑦(𝑡) = lim

𝑖→∞
𝑦𝑖(𝑡)                                                                                                                 (31) 

This method can be easily applied to nonlinear equations as well. And can Getting a formula in 

general may be a problem with a specification convergence period. And this method gives the 

solution in closed form to the linear binomial equation with constant coefficients and even to the 

equation: 

𝐷𝑎
𝛼𝑦(𝑡) − 𝛽(𝑡 − 𝑎)𝜆𝑦(𝑡) = 0 ⟹ 𝐷𝑎

𝛼−𝑆𝑦(𝑎) = 𝑏𝑆                       (32) 

where 𝑏𝑆, 𝛽 are real constants, 𝑆 = 1, . . . , 𝑚 and 𝜆 > −𝛼. Because we already know the 

solution of linear two-term equations with constant coefficients, we will solve the second 

problem now.  Assume that without the proof that the problem (32) satisfies all necessary 

assumptions to this method [10,22]. 

Example 5.1. Solve the initial-value problem (29) with the Riemann-Liouville fractional 

derivative, 𝑛 = −[−𝛼]. 

Applying the formulas (30) and (31) we get the expressions. 

𝑦0(𝑡) = ∑
𝑏𝑠

Γ(𝛼 − 𝑆 + 1)
 

𝑛

𝑆=1

(𝑡 − 𝑎)𝛼−𝑆 

𝑦𝑖(𝑡) = 𝑦0(𝑡) +
𝛽

Γ(𝛼)
∫(𝑡 − 𝜇)𝛼−𝑆

𝑡

𝑎

(𝜇 − 𝑎)𝜆𝑦𝑖−1(𝜇)𝑑𝜇 

We compute terms 𝑦1(𝑡), 𝑦2(𝑡) and see what happens. 

𝑦1(𝑡) = 𝑦0(𝑡) +
𝛽

Γ(𝛼)
∫(𝑡 − 𝜇)𝛼−𝑆

𝑡

𝑎

∑
𝑏𝑠

Γ(𝛼 − 𝑆 + 1)
 

𝑛

𝑆=1

(𝜇 − 𝑎)𝛼−𝜆−𝑆 

= 𝑦0(𝑡) + 𝛽 ∑
𝑏𝑠

Γ(𝛼 − 𝑆 + 1)
 

𝑛

𝑆=1

𝐷𝑎
−𝛼((𝑡 − 𝑎)𝛼−𝜆−𝑆) 

𝑦0(𝑡) + 𝛽 ∑
𝑏𝑠(𝑡 − 𝑎)2𝛼+𝜆−𝑠Γ(𝛼 + 𝜆 − 𝑆 + 1)

Γ(𝛼 − 𝑆 + 1)  Γ(2𝛼 + 𝜆 − 𝑆 + 1)

𝑛

𝑠=1

 

𝑦2(𝑡) = 𝑦0(𝑡)𝛽𝐷𝑎
−𝛼 ((𝑡 − 𝑎)𝜆𝑦1(𝑡)) = 𝑦1(𝑡) + 𝛽2𝐷𝑎

−𝛼 ((𝑡 − 𝑎)𝜆(𝑦1(𝑡) − 𝑦0(𝑡))) 
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= 𝑦1(𝑡) + 𝛽 ∑
𝑏𝑠(𝑡 − 𝑎)3𝛼+2𝜆−𝑠Γ(𝛼 + 𝜆 − 𝑆 + 1)Γ(2𝛼 + 2𝜆 − 𝑆 + 1)

Γ(𝛼 − 𝑆 + 1)  Γ(2𝛼 + 𝜆 − 𝑆 + 1)Γ(3𝛼 + 2𝜆 − 𝑆 + 1)

𝑛

𝑠=1

 

This can be proved in general by our: 

𝑦𝑖(𝑡) = ∑
𝑏𝑠(𝑡 − 𝑎)𝛼−𝑠

Γ(𝛼 − 𝑆 + 1)
 

𝑛

𝑆=1

[1 + ∑ (∏ 𝐴𝑘

𝑗

𝛾=1

Γ(𝛾(𝛼 + 𝜆) − 𝑆 + 1)

Γ(𝛾(𝛼 + 𝜆) + 𝛼 − 𝑆 + 1)
) (𝛽(𝑡 − 𝑎)𝛼+𝜆)

𝑖

𝑗

𝑖=1

] 

When we shift the index in the product and consider 𝑚 → ∞, we obtain the solution of 

this homogeneous equation containing the generalized function [23,24]: 

𝑦𝑛(𝑡) = ∑
𝑏𝑠(𝑡 − 𝑎)𝛼−𝑠

Γ(𝛼 − 𝑆 + 1)
 

𝑛

𝑆=1

𝑅
𝛼,1+

𝜆
𝛼

,1+
𝜆−𝑆

𝛼
 
 (𝛽(𝑡 − 𝑎)𝛼+𝜆)                            (33) 

Example 5.2.  Solve the equation in the initial-value problem (29) with the Caputo 

fractional derivative and with initial conditions𝑦𝑠(𝑎) = 𝑏𝑠 for 𝑆 =  0, . . . , 𝑛 −  1. 

Here we solve the linear initial-value problem which we discussed generally for sequential 

derivative before. If we look at the Caputo derivative as its special case, implies the following 

procedure. Again, by application of (30) and (31) with: 

𝑦0(𝑡) = ∑
𝑏𝑠

𝑠!
 (𝑡 − 𝑎)𝑠

𝑛−1

𝑠=1

                                                                                                        (34) 

By following the same steps above, we obtain the expression for the 𝑖𝑡ℎ term: 

𝑦𝑖(𝑡) = ∑
𝑏𝑠

𝑠!
 (𝑡 − 𝑎)𝑠 [1 + ∑ (∏ 𝐴𝑘

𝑗

𝛾=1

Γ(𝛾(𝛼 + 𝜆) − 𝑆 + 1)

Γ(𝛾(𝛼 + 𝜆) + 𝛼 − 𝑆 + 1)
) (𝛽(𝑡 − 𝑎)𝛼+𝜆)

𝑖

𝑗

𝑖=1

]

𝑛−1

𝑠=1

  (35) 

Then we are using a limit and shift of the index we get the solution: 

𝑦𝑖(𝑡) = ∑
𝑏𝑠

𝑠!
 (𝑡 − 𝑎)𝑠

𝑛−1

𝑠=1

𝑅
𝛼,1+

𝜆
𝛼

,
𝜆+𝑠

𝛼

(𝛽(𝑡 − 𝛼)𝛼+𝜆)                                                          (36) 

We derived the solution of the homogeneous equation (34) with appropriate initial 

conditions in the Riemann-Liouville and the Caputo senses. It can be proven that the functions in 

th e sums which form both solutions, are independent [5]. We saw that due to the linearity it is 
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not difficult to obtain the formula for the 𝑖𝑡ℎ term of the series and then to pass to the limit. 

Generally, the situation is not so simple. 

lim
𝑖→𝑛

∑
𝑏𝑖

𝑖!
 (𝑡 − 𝑎)𝑖

𝑛−1

𝑖=1

 

6. The Caputo Fractional Differential  

Definition 6.1 (Caputo Fractional Derivative) 

Assume the function 𝑓 ∈ ℂ𝑛[𝑎, 𝑏], 𝑎 > 0 and 𝑛 − 1 < 𝛼 ≤ 𝑛, then,  

𝑫𝒕
𝜶 𝒇(𝒕) =

𝟏

𝚪(𝒏 − 𝜶)
 ∫(𝒕 − 𝒙)𝒏−𝜶−𝟏

𝒕

𝒂

 
𝝏𝒏 𝒇(𝒙)

𝝏𝒙𝒏
 𝒅𝒙 =

𝟏

𝚪(𝒏 − 𝜶)
 ∫

 𝒇(𝒏)(𝒙)

(𝒕 − 𝒙)𝜶+𝟏−𝒏

𝒕

𝒂

  𝒅𝒙,    𝒂 ≤ 𝒕

≤ 𝒃, (𝟑𝟕)  

The benefit of using the Caputo definition is that it does not only allow for the consideration of 

easily interpreted initial conditions, but it is also bounded, meaning that the derivative of a 

constant is equal to 0 [11,24]. 

Theorem 6.1. Fundamental Theorem of Calculus (FTC) 

Let 𝑓(𝑥) be a continuous real-valued function defined on a closed interval [𝑎, 𝑏] and Let f be a 

real-valued function on a closed interval [𝑎, 𝑏] and F an antiderivative of 𝑓  in [𝑎, 𝑏]. 

𝐹(𝑥) = ∫ 𝑓(𝑥) 𝑑𝑥,               ∀ 𝑥 ∈ [𝑎, 𝑏].

𝑥

𝑎

                                                       (38) 

Then, F(x) is uniformly continuous on [𝑎, 𝑏] differentiable on the open interval (𝑎, 𝑏), and 

𝐹′(𝑥) = 𝑓(𝑥),           ∀𝑥 ∈ (𝑎, 𝑏)                                                                      (39) 

If 𝑓 is Riemann integrable on, [𝑎, 𝑏] then. 

∫ 𝑓(𝑥) 𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎)    

𝑏

𝑎

                                                                                  (40) 
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𝑓(𝑥) is 𝑛𝑡ℎ differentiable on [𝑎, 𝑏] then it is continuous since 𝑓 ∈ 𝐶𝑛[𝑎, 𝑏] and (𝑡 − 𝑥)𝑛−𝛼−1 

is continuous on the interval [0, 𝑡) Since 

𝑓(𝑛)(𝑥) 𝑖𝑠 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑜𝑛 [𝑎, 𝑏],    𝑎𝑛𝑑 − 1 < 𝑛 − 𝛼 − 1 ≤ 0,    then 

𝑓(𝑛)(𝑥)

(𝑡 − 𝑥)𝛼+1−𝑛
 

Is integrable over [0, 𝑡], where  𝑎 ≤ 𝑡 ≤ 𝑏. Thus, by FTC, 
𝑓(𝑛)(𝑥)

(𝑡−𝑥)𝛼+1−𝑛 is differentiable and then it 

is continuous [5,25]. 

Example 6.1 Find the second derivative of 𝑓(𝑥) = 𝑥3 using Caputo definition. 

From equation (37), we have. 

𝐷𝑡
𝛼 𝑓(𝑡) =

1

Γ(𝑛 − 𝛼)
 ∫(𝑡 − 𝑥)𝑛−𝛼−1

𝑡

0

 
𝜕𝑛 𝑓(𝑥)

𝜕𝑥𝑛
 𝑑𝑥,        0 ≤ 𝑡 < 𝑏 

If  𝑛 = 3,       𝛼 = 2  then, 

𝐷𝑡
2 𝑓(𝑡) =

1

Γ(3 − 2)
 ∫(𝑡 − 𝑥)3−2−1

𝑡

0

 
𝜕3 𝑓(𝑥)

𝜕𝑥3
 𝑑𝑥,        

For 𝑓(𝑥) = 𝑥3 ⟹ 𝑓′(𝑥) = 3𝑥2,    𝑓′′(𝑥) = 6𝑥, 𝑎𝑛𝑑 𝑓′′′(𝑥) = 6 

Then, 

𝐷𝑡
2 𝑓(𝑡) =

1

Γ(1)
 ∫(𝑡 − 𝑥)0

𝑡

0

 6 𝑑𝑥, =  ∫ 6

𝑡

0

  𝑑𝑥 = 6𝑡     

Note that Γ(1) = 1 

Example 6.2. Find the half derivative of 𝑓(𝑥) = 𝑥3 using Caputo definition. 

so  𝑛 = 3 and 𝛼 = 1/2, 

𝐷𝑡

1
2 𝑓(𝑡) =

1

Γ (3 −
1
2

)
 ∫(𝑡 − 𝑥)3−

1
2

−1

𝑡

0

 
𝑑3 𝑓(𝑥)

𝑑𝑥3
 𝑑𝑥, 
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Using the previous example, we have 𝑓′′′(𝑥) = 6 then, we have, 

𝐷𝑡

1
2  𝑓(𝑡) =

1

Γ (
5
2

)
 ∫(𝑡 − 𝑥)

3
2

𝑡

0

 6  𝑑𝑥 = 𝐷𝑡

1
2 𝑓(𝑡) =

6 

Γ (
5
2

)
 ∫(𝑡 − 𝑥)

3
2

𝑡

0

  𝑑𝑥.  

Using the properties of Gamma function, the integral becomes formula, 

𝐷𝑡

1
2  𝑓(𝑡) =

6 . 2

5. Γ (2 +
1
2

)
 (𝑡 − 𝑥)

3
2

+1|
0

𝑡

  =
12

5.
3
4

Γ (
1
2

)
(−𝑡)

5
2 =  

8

15√𝜋
. (−𝑡)

5
2  

 

(1)  𝐷𝑡
𝛼(𝑓(𝑡) = 𝑡3), 0 ≤ 𝛼 ≤ 2                                      (2) 𝐷𝑡

𝛼(𝑓(𝑡) = 𝑡3),   0 ≤ 𝛼 ≤
1

2
 

Figures 6.1 (1)-(2) 

Remark 6.1. The fractional derivatives and integrals of function 𝑓(𝑥) = 𝑥3 in example 6.1 and 

6.2 plotted in Figures 6.1 (1)-(2) are computed by applying definition 6.1 and Theorem 6.1. The 

fraction derivatives and integrals of 𝑓(𝑡) =  𝑡3 are evaluated by the application of Lemma 4.2. 

The fractional derivatives and integrals of trigonometric and hyperbolic functions can be 

evaluated using the relation between Volterra Integral function and generalized trigonometric 

functions (35), generalized hyperbolic functions (37). But the numerical evaluation of the 

Volterra Integral functions is itself difficult. We have used a much simpler method based on the 

Haar wavelets, to evaluate the fractional integrals of some functions of Caputo Fractional 

Differential. For the classical cases. 𝛼 =  2,
1

2
. The obtained results by the Haar wavelets are in 

http://www.ajrsp.com/


Academic Journal of Research and Scientific Publishing | Vol 5 | Issue 54       

Publication Date: 05-10-2023 

 

  
  
 

  

   www.ajrsp.com                                                                                                                                       107  

ISSN: 2706-6495 

  
good agreement with the exact values. For 𝑓(𝑡)  = 𝑡3  and 𝛼 = 2,

1

2
, the maximum absolute error 

is 6.5 × 10−4 × 10-4 and 
8

15√𝜋
× 10−5 respectively. 

7. Conclusions 

The classical tools from functional analysis operator theory, on existence to boundary value 

problems for nonlinear fractional differential equations, with the. Laplacian Transform 

Interpretation and the Caputo fractional derivatives, Volterra Integral Equation, Caputo 

Fractional Differential is developed, we established sufficient conditions for existence results for 

different classes of nonlinear boundary value problems involving fractional derivatives, subject 

to integral boundary conditions. Several existence results for positive and multiple positive 

solutions to different ways of boundary value problems for fractional differential equations are 

obtained. For the value problem (1), the existence of at least one positive solution is guaranteed 

in a specially constructed cone in the Laplace transform of Riemann-Liouville fractional integral 

operator. It is observed that functions (22) and (23) for the value problem (28), satisfy some 

interesting the Volterra Integral Equation, Caputo Fractional Differential and useful properties 

and they are related to each other. This helps us to construct a cone in the partial differential 

equation model. Then we established existence results for positive solutions in this cone. 
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