
Academic Journal of Research and Scientific Publishing | Vol 5 | Issue 54       

Publication Date: 05-10-2023 

 

  
  

  

   www.ajrsp.com                                                                                                                           75  

ISSN: 2706-6495 

 

  

 

Detection of Pneumonia from Chest X-ray Images Using Transfer Learning 

and Ensemble Learning 

Bahatheq Tariq Ahmed S1, Jayanth Balasubramanian2, Koh Shang Hui3 

Undergraduate, Computer Science, National University of Singapore, Singapore 1,2,3 

Email: Tariqbahatheq@outlook.com  

https://colab.research.google.com/drive/1YGE9p2B4Fgx5dN2omxA0wa4djPkZigpI?usp=sh

aring 

 

Abstract 

 Pneumonia, characterized by lung inflammation and caused by various strains of bacteria and 

viruses, consistently ranks as one of the top three causes of death in Singapore. Despite chest X-

ray being the standard imaging test for pneumonia, its diagnostic accuracy has limitations due to 

factors like low specificity and subjective variance among radiographers. This research aims to 

enhance the diagnosis by predicting pneumonia based on chest X-ray images sourced from a 

Kaggle dataset with 5856 images, primarily from pediatric patients at the Guangzhou Women and 

Children’s Medical Center. A novel approach modifies the Kaggle data split to introduce more 

validation data and employs data augmentation techniques such as random flips and rotations to 

stabilize the model. Convolutional Neural Networks (CNNs) form the core of the prediction 

methodology. Simple CNNs are evaluated, followed by transfer learning models using ImageNet 

architectures. The models are assessed based on their weighted F1 scores, with a special emphasis 

on recall to ensure critical cases aren't missed. Ensemble techniques, such as voting, are explored 

to further enhance prediction capabilities and robustness. The paper culminates by comparing these 

models against existing frameworks and provides insights into their potential application in real-

world medical diagnostics to further enhance the medical field. 
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 1. Introduction: 

 Pneumonia is an inflammatory condition affecting the lungs, predominantly the tiny air sacs 

known as alveoli. Typically, these sacs fill with pus or fluid, making breathing painful and 

limiting oxygen intake. Caused by a plethora of bacteria, viruses, and even fungi, pneumonia 

presents a significant healthcare challenge globally. 
 

In Singapore, the gravity of this disease is further underscored, ranking consistently among the 

nation's top causes of death. Traditional diagnostic methods, such as chest radiography, have 

been employed as the frontline defense to detect this ailment. However, the accuracy of these 

methods is often marred by various challenges, ranging from the inherent limitations of the 

imaging technique to the subjective interpretations of the radiographers. 
 

Amidst these challenges, the advent of artificial intelligence and machine learning offers a 

beacon of hope. By leveraging vast datasets and intricate algorithms, researchers are 

continuously striving to improve the accuracy and speed of pneumonia diagnosis. This paper 

delves into one such endeavor, exploring the potential of convolutional neural networks and 

ensemble learning to detect pneumonia from chest X-ray images. Through a nuanced exploration 

of methodologies, datasets, and evaluation criteria, this research aims to contribute to the 

ongoing efforts in combating this formidable disease. 

Motivation 

 Pneumonia consistently ranks among the top 3 principal causes of death in Singapore, as 

reported by the Ministry of Health. It is characterized by lung inflammation, particularly in the air 

sacs, and is caused by various strains of bacteria and viruses. 

 A chest radiography, or chest X-ray, is the standard imaging test for pneumonia. However, it has 

been noted that the diagnostic accuracy of chest radiography is limited (Self et al. 2013, van den 

Berk et al. 2022). One reason is its low specificity (Esayag et al. 2010). Additionally, subjective 

variance among radiographers induces significant uncertainty in chest radiography reports, further 

complicating clinical diagnoses. 

 Comparatively, a computed tomography (CT) scan displays slightly better sensitivity and 

significantly higher specificity. A CT scan is often employed to rule out harder-to-detect cases of 

pneumonia. However, it remains prohibitively expensive to be used as a first-line test. Thus, an 
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 accurate automated computer-aided diagnosis system using chest X-ray images has both medical 

and economic benefits. 

Dataset 

 The chest X-ray images used are from a Kaggle challenge, and they are sourced from research 

done by Kermany in 2018. 5856 images consisting of 4273 positive ‘pneumonia’ and 1583 

negative ‘normal’ samples were selected from one to five years old pediatric patients at the 

Guangzhou Women and Children’s Medical Center, Guangzhou. 

 The Kaggle data split was modified to introduce more validation data. 20% of the testing dataset 

was randomly split and used to supplement the small validation dataset. A fixed seed was used for 

this split to ensure consistency across all trained models and to facilitate comparison between them. 

The decision to split the validation set from the testing set was motivated by an observation that 

the training and testing sets were dissimilar, complicating early attempts at model selection. After 

the split, more consistency between validation and testing was achieved. 

 

Split\ Label Normal Pneumonia Total 

Train 1341 3875 5216 

Validation 8 8 16 

Test 234 390 624 

Total 1583 4273 5856 

Figure 1: Structure of the Kaggle dataset Figure 2: Structure of the modified Kaggle 

dataset 
 

 Weighted random sampling was applied for the training dataset to account for label imbalances. 

As before, a generator with a fixed seed was used to ensure uniform training conditions for all 

models. 

 The following transformations were applied to the images: resizing, normalization with respect 

to the mean and standard deviation of the unaugmented training dataset, and a 80% center crop. 

The center crop removes large empty spaces and focuses on the lungs. 

Split\ Label Normal Pneumonia Total 

Train 1341 3875 5216 

Validation 60 81 141 

Test 182 317 499 

Total 1583 4273 5856 
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Figure 3: Sample resized chest X-ray image with (left) and without (right) center crop. 

Augmentation 

 To make the model more stable and less prone to noise, new data was generated by augmenting 

the current data. This was also done to make up for the amount of data we have. The following 

transformations were applied to the images: random horizontal flip, random rotation, and random 

brightness change. 

Strategy 

 Batch gradient descent was employed to train all the networks, with a typical batch size of 48 to 

64. To speed up convergence, AdamW was used to adapt the per-parameter learning rate. The 

models’ accuracies on the validation dataset were calculated after each epoch. Early stopping was 

implemented to prevent model overfitting by stopping training if validation accuracy dropped by 

more than a threshold of 0.1 (which worked best in our testing) over 3 consecutive epochs.  

 Various learning rate schedulers were employed to adjust the learning rate based on validation 

accuracy. For ResNet based models, ReduceLROnPlateau was found to work best. This required 

some fine-tuning: for example, one combination of schedulers given as an example on the PyTorch 

docs, ExponentialLR followed by MultiStepLR, was found to make the accuracy of the trained 

Resnet based model worse. Other models were trained using StepLR to reduce the learning rate 

after a fixed number of iterations.  

Evaluating the Models 

 Many criteria were considered to be used as the basis for choosing the best models. The first 

option was to choose recall. If the model is used as a diagnostic aid for medical workers, missing 

a pneumonia case can be critical. The next option was to use accuracy, the most straightforward 

option given that the dataset was balanced using weighted random sampling. Moreover, it is 

transparent for workers in the medical field and is widely used in that field. Another option was 
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 precision, or the positive predictive value. For such a model, a positive prediction is most likely to 

be an actual positive. A potential drawback might be a larger proportion of false negatives. 

 We reason that solely relying on recall or precision alone is inadequate for this computer-aided 

diagnosis as the other scores can be very low. A weighted F1 score focused more on recall was 

chosen. We prefer recall because, for this critical disease, we prefer that the model doesn’t miss 

any cases and classifies them as negative. The beta value chosen in this case is 2. 

𝐹𝛽  =  (1 + 𝛽2)  ⋅
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅  𝑟𝑒𝑐𝑎𝑙𝑙

(𝛽2  ⋅  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)  +  𝑟𝑒𝑐𝑎𝑙𝑙
  

Baseline CNN 

 To provide a baseline accuracy with which to compare later models with, a basic deep CNN was 

trained using the following architecture: 
 

Convolution layers: 

Conv (3, 32)→ ReLU→ BN(32)→ maxpool(2, 2)→ Conv(32, 64)→ ReLU→ Dropout(0.1)→  

BN (64)→ maxpool(2, 2) → Conv(64, 64)→ ReLU→ BN(64)→ maxpool(2, 2)→  

Conv (64, 128)→ ReLU→ Dropout(0.2)→ BN(128)→ maxpool(2, 2)→  

Conv (128, 256)→ ReLU→ Dropout(0.2)→ BN(256)→ maxpool(2, 2)  

Classifier: 

Linear (9216, 128)→ ReLU→ Dropout(0.2)→ Linear(128, 2) 

Training Parameters: 

Kernel size : 3 

Optimizer : AdamW 

Learning rate : 0.00001 

Loss Function : CrossEntropyLoss 

Scheduler : StepLR - size 7, gamma 0.1 

Epochs  : 20 

Figure 4: Architecture for the baseline CNN 

Transfer Learning 

 From 2012 to 2017, increasingly deeper CNN architectures showed drastic improvements in the 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC).  
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 The availability of a dataset of over 1.2 million training images, orders of magnitude above past 

datasets, was a key factor in enabling the training of larger yet more accurate models. 

 A direct application of top-performing ILSVRC models to the Kaggle dataset is likely to result 

in model overfitting as the dataset provides only 5216 training images. Instead, an inductive 

transfer learning was used to leverage existing ConvNet architectures. By replacing only the 

classifier layers, the hypothesis space of possible models is restricted beneficially. 

 In total, 7 classifiers were adapted for transfer learning: AlexNet, InceptionNetV3, 

EfficientNetV2, DenseNet121, GoogLeNet, ResNet50, and VGG19BN. For all models, the final 

classifier layer was replaced with a three-layer classifier as described in Figure 5. The parameter 

n was varied to match the output size of the previous layers. k =128 or 256 and d was varied in 

pursuit of higher accuracy. The model parameters in all other layers were frozen. 
 

Classifier: 

Linear(n, 512)→ ReLU→ Dropout(d) → Linear(512,k)→ ReLU→ Linear(k,2)  

Training Parameters: 

Optimizer : Adam/AdamW 

Learning rate : 0.00001 for AdamW, 0.001 for Adam 

Loss Function : CrossEntropyLoss 

Scheduler : StepLR - size 7, gamma 0.1/ ReduceLROnPlateau 

Epochs  : 20 

EarlyStopper : patience 3, delta 0.1 

 

Figure 5: Classifier architecture and model parameters used for transfer learning 
 

Frequency Domain Learning 

 Xu et al. noted that existing structures of notable neural networks can be leveraged to perform 

deep learning in the frequency domain. An exploration of these ideas was performed by analyzing 

an instance of transfer learning on the frequency space. After a 2D FFT, the modulus of the real 

and complex parts was taken. The frequency image was then resized to 512x512 and normalized 

to a mean of 0 and standard deviation of 1. Transfer learning was then conducted using VGG19BN 

with the classifier and parameters described in Figure 5. 
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 2. Discussion and Analysis 

 The accuracy, precision and recall of the models tested are shown in Figure 6. 

Architecture Overall Accuracy Precision Recall Weighted F1 

Baseline CNN 76.95 73.60 99.37 92.87 

Fourier VGG 89.38 89.31 96.53 94.99 

AlexNet 91.78 90.12 97.79 96.15 

InceptionNetV3 80.76 77.56 98.11 93.17 

EfficientNetV2 91.58 91.79 95.27 94.55 

DenseNet121 89.78 88.00 97.16 95.18 

GoogleNet 89.38 88.82 95.27 93.91 

ResNet50 91.58 90.56 96.85 95.52 

VGG19BN 90.18 90.12 94.95 93.94 

Figure 6: Accuracy, precision, recall, and weighted F1 score (β=2) of different ML models in % 
 

 All models tested showed excellent recall with very few false negative identifications. Precision 

was less noteworthy, with a significant false positive rate. In contrast, there were near-zero false 

negative identifications. 

 With the exception of InceptionNetV3, the transfer learning models substantially outperformed 

the baseline CNN in terms of accuracy. The Fourier VGG model trained on the frequency space 

was competitive with the traditional transfer learning models. 

 Evaluating our model against other state-of-the-art models can provide insights into its 

competence and resource utilization. On Kaggle, the source of our dataset, most models achieve a 

testing accuracy between 85 and 90%. However, two models outperform the rest. The first is a 

CNN trained from scratch, achieving 92.63% accuracy (Mathur, 2020). The second employs a 

fine-tuned ResNet152 model, attaining 91.99% accuracy (Barbosa, 2022). 
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  Our best-performing model achieved 91.78% accuracy, placing it among the top-performing 

models for this specific dataset. On the other hand, in 2022, Li and Li demonstrated a 99.62% 

accuracy using ensemble methodologies for COVID-19 pneumonia detection on a separate dataset. 

As a result, our model may not be suitable for deployment in the medical field as a standalone 

diagnostic tool. Instead, it could be used to assist radiologists in their decision-making process, 

rather than serving as the sole determinant. 

Explaining Model Outputs 

 With deep learning models becoming increasingly deep (even the baseline CNN has 26 layer) 

and complex, such as with skip connections between layers, they become even more opaque in 

their decision making. The tens or even hundreds of thousands of parameters seemingly renders 

these networks to be all but a black box classifier. Two problems naturally arise: (1) difficulty in 

trusting the model’s outputs (2) difficulty in monitoring and debugging the model. 

 In this section, feature (pixel) attribution is examined. Each pixel’s contribution to the model’s 

classification, a weaker but useful notion of explainability, is calculated. Formally, given a 

complex model f and an input instance (image) x, one aims to 

• Map x to the simplified input x’ through the mapping function h: h(x’) = x (In our case, 

since the input instance is an image, a sample mapping function ℎ could map a vector of 0s 

and 1s indicating the presence or absence of a group of pixels to an image (where 0 means 

that “superpixel” is replaced with the average RGB value of its neighbors). 

• Create a simplified model g such that𝑔(𝑧′) ≈  𝑓(ℎ(𝑧′)) ∀ 𝑧′ ≈  𝑥′. (Lundberg, Lee 2017) 

LIME, an additive explanation model, is utilized. It assigns a contribution 𝜙i to each 

simplified feature zi’ ∈  𝑧′ (where 𝑧 has M dimensions) such that 𝑔(𝑧′)  =  𝜙0 +

∑𝑀
𝑖 = 1 𝜙𝑖𝑧′𝑖      ∀ 𝑧′ ≈  𝑥′ 

 LIME uses penalized linear regression to minimize Least Squared Loss between 𝑓(ℎ(𝑧′)) and 

𝑔(𝑧′) , ensuring that g is faithful to the original model f around the given input instance (Lundberg, 

Lee 2017). Figures 7 and 8 show the outputs from running LimeImageExplainer on two of our best 

models, and ResNet50 and EfficientNet. 
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Figure 7: Chest X-Ray of a person with pneumonia. Left: yellow boundary indicates the top 5 

features that cause the trained ResNet50 model to classify the image as “Pneumonia”. Right: 

green and red regions indicate features that contributed positively (and negatively, respectively) 

towards “pneumonia” classification 

 

 

Figure 8: Chest X-Ray of a person with pneumonia. Left: yellow boundary indicates the top 5 

features that cause the trained EfficientNet model to classify the image as “Pneumonia”. Right: 

green and red regions indicate features that contributed positively (and negatively, respectively) 

towards “pneumonia” classification 
 

 Despite the identical positive classification, the two models pay attention to different regions to 

make the classification. Comparing the yellow boundaries in Figure 7 and 8, we can see that the 

top and middle of the left lung contributed positively to classification as Pneumonia for both 

models. However, if we compare the red and green regions for the two models, we notice that the 

models disagree on the contribution of the bottom right of the lung (contributes positively to 

EfficientNet classification, negatively to ResNet classification). Unfortunately, our team does not 

have the medical expertise to determine which model is correct regarding this.  

 From the above discussion, it is clear that pixel attribution using tools like LIME can give more 

information to a doctor than a binary classification to help a doctor reach an informed conclusion. 

However, disagreement between the different models suggests that the information could 

potentially be misleading,  
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 and a similar approach with LIME plots of multiple models could be used by the doctor to find 

common regions that both models found significant in making a prediction. 

Voting Ensembles 

 The training of multiple independent deep learning models motivates the use of ensemble 

learning methodologies. A combination of multiple hypotheses may produce higher accuracy than 

any individual constituent hypothesis. 

 Bayes classifiers in the form of unweighted voting ensembles were tested first using all 7 trained 

transfer learning models and next using the top 5 models by weighted F1 score. In light of the 

significant false positive rate of the transfer learning models, three levels of bias were evaluated. 

The first, an unbiased voting, was a simple majority algorithm requiring 4 of 7 or 3 of 5 votes. The 

second required one additional positive vote while the third required two more (effectively a 

unanimous decision for the ensemble of 5) for an overall positive classification respectively. The 

stricter requirements for an overall positive result represent an increasing negative bias, or bias 

towards the negative or ‘normal’ classification. The results are shown in Figures 10 and 11. 

 We observe a positive trend in the precision and negative trend in recall as the negative bias 

increases. This is a result of a decreasing false positive but increasing false negative rate. The 

unbiased, simple majority ensemble was the best performing ensemble. However, it did not 

improve upon AlexNet, the best performing transfer learning model. This indicated a high degree 

of similarity between the transfer learning models. 

Ensemble Overall Accuracy Precision Recall Weighted F1 

Simple Majority 91.78 90.35 97.48 95.97 

5 or more 92.79 93.00 95.90 95.31 

6 or more 92.38 94.86 93.95 94.13 

Figure 9: Accuracy, precision, recall and weighted F1 score (β=2) for the unweighted voting 

ensembles using 7 models in % 
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Ensemble Overall Accuracy Precision Recall Weighted F1 

Simple Majority 91.98 91.10 96.85 95.64 

4 or more 92.18 93.71 93.86 93.83 

Unanimous 87.37 95.68 89.41 90.60 

Figure 10: Accuracy, precision, recall and weighted F1 score (β=2) for the unweighted voting 

ensembles using 5 best-performing models (by weighted F1 score) in % 

 

3. Recommendations: 

1. Further Exploration of Transfer Learning: Given the promising results observed from 

transfer learning, it is recommended to explore more recent architectures and fine-tuning 

techniques. This could enhance model performance and adaptability to varied datasets. 

2. Data Augmentation and Expansion: To mitigate the risk of overfitting, especially when 

adapting large models to relatively smaller datasets, it would be beneficial to consider more 

advanced data augmentation techniques. Additionally, collaborations with medical institutions 

could provide a larger and more diverse dataset, further enhancing model robustness. 

3. Ensemble Learning: The research demonstrated the potential of ensemble learning in 

boosting accuracy. Exploring different ensemble techniques, such as stacking or bagging, 

could potentially lead to even better results. 

4. Explainability and Trust: As machine learning models become integral to medical 

diagnostics, ensuring their transparency and trustworthiness is crucial. Further research into 

model explainability, beyond pixel attribution, is recommended. This could enhance trust 

among medical professionals and facilitate the adoption of these tools in clinical settings. 

5. Collaboration with Radiologists: The model, while promising, should not be viewed as a 

standalone diagnostic tool, given the current accuracy levels. Collaborations with radiologists 

could provide insights into practical challenges and needs, leading to models better tailored 

for real-world application. 

6. Frequency Domain Analysis: The exploration into frequency domain learning showed 

potential. It's recommended to delve deeper into this area, perhaps looking at different 

transformation techniques or leveraging domain-specific knowledge 
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 4. Conclusion and Future Work 

 Based on the weighted F1 scores from all the models and ensembles, AlexNet achieved the 

highest score. 

 

Figure 11: Confusion matrix for AlexNet 

 Further classification of positive pneumonia cases by cause (bacterial or viral) can be explored. 

While the dataset explanation on Kaggle notes that a typical bacterial pneumonia exhibits a local 

anomaly in the chest X-ray and a viral pneumonia is characterized by diffuse patterns, it is difficult 

for an untrained eye to differentiate the two in practice. 

 Many new large models being deployed in 2022 and 2023 claim to be extremely efficient on 

data. These include the recently released and commercially available Amazon Titan foundation 

models. Training using such models can be explored to further enhance the results of the project 

at the expense of the project budget. 

 There is ample room for fitting other architectures from ILSVRC or elsewhere into the frequency 

space. In 2021, Han and Hong introduced specialized Fourier CNNs and experimented with 

shallow networks. Adapting their ideas to deeper networks may yield better results. 
 

5. Ethical Consideration: 

This research prioritizes the ethical standards integral to scientific endeavors, particularly in the 

realm of medical research. Herein, we outline the key ethical considerations that were adhered to: 

1. No Human Experiments: At no point did this study involve direct experiments on humans 

by the authors. The research was fundamentally computational, focusing on the analysis of 

pre-existing datasets. 

2. Data Sources: The data used in this research is sourced from a Kaggle challenge, which in 

turn was based on research done by Kermany in 2018. It's crucial to understand that all data 
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 used was anonymized and void of any personal identifiers, ensuring the privacy and 

confidentiality of the patients from whom the X-ray images were derived. 

3. Patient Consent & Approvals: While the authors did not directly conduct experiments or 

collect data, it's implicit that the original data collectors sought necessary consent from patients 

or their guardians, especially given the sensitive nature of medical imaging. Moreover, the 

necessary approvals from relevant authorities would have been secured by the primary data 

collectors. 

4. Protocols Followed: The research strictly followed data handling and analysis protocols to 

ensure the integrity of the results. Furthermore, while the models and findings show promise, 

it's crucial to emphasize their supplementary role in medical diagnosis. Decisions based on 

these findings should be made with caution, ideally in tandem with expert human judgment. 

5. Transparency & Openness: The research aims to contribute to the broader scientific 

community. As such, efforts have been made to ensure transparency in methodology, findings, 

and potential limitations. This open approach facilitates peer review and collective 

advancements in the field. 

By adhering to these principles, this research aims to be both scientifically rigorous and ethically 

responsible, ensuring that advancements made contribute positively to patient care and the broader 

medical community. 
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